35 research outputs found

    Pentan-1-ol i jego izomery: pentan-2-ol, pentan-3-ol,2-metylobutan-1-ol, 3-metylobutan-2-ol, 2-metylobutan-2-ol, 2,2-dimetylopropan-1-ol. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego

    No full text
    Pentanol to alifatyczny nasycony alkohol monohydroksylowy (C5H11OH), który ma osiem izomerów położeniowych. Cztery z nich są alkoholami I-rzędowymi, trzy – II-rzędowymi, jeden – III-rzędowym. W normalnych warunkach pentanole (alkohole amylowe) są bezbarwnymi, łatwopalnymi cieczami, poza 2,2-dimetylopropan-1-olem, który jest krystalicznym ciałem stałym. Pary alkoholi mogą tworzyć mieszaniny wybuchowe z powietrzem. Alkohole pentylowe są stosowane jako rozpuszczalniki: lakierów, żywic, gum, a także w przetwórstwie tworzyw sztucznych i ropy naftowej. Służą również do produkcji syntetycznych środków aromatyzujących oraz jako surowce do produkcji preparatów farmaceutycznych. Główną drogą wchłaniania pentanoli w warunkach narażenia zawodowego są drogi oddechowe. Działają one drażniąco na: układ oddechowy, skórę i oczy zarówno u zwierząt, jak i u ludzi. U ludzi, szczególnie z nietolerancją na niższe alkohole (etanol), izomery pentanolu powodowały podrażnienie skóry. Narażenie zwierząt drogą dermalną przy długotrwałej aplikacji powodowało poważne podrażnienie z rumieniem, atonią, aż do martwicy. W organizmie izomery pentanolu mogą być utleniane lub sprzęgane z kwasem glukuronowym, przy czym alkohole I-rzędowe są metabolizowane głównie do odpowiednich aldehydów, a następnie kwasów, alkohole II-rzędowe są częściowo utleniane do odpowiednich ketonów, a w dużej części glukuronidowane, zaś alkohol III-rzędowy (2-metylo-2-butanol) nie może tworzyć aldehydu i ketonu, dlatego jest wydalany z moczem w niezmienionej postaci jako glukuronid. Mechanizm działania toksycznego pentanoli nie został jednak w pełni wyjaśniony. Na podstawie wyników badań na zwierzętach doświadczalnych wykazano, że krytycznym skutkiem narażenia na pentan-1-ol i jego izomery jest działanie drażniące. Wartość NDS dla pentanoli wyliczono z wartości RD50 wyznaczonej w badaniach na myszach, co daje wartość 75 mg/m³ . W celu zabezpieczenia pracowników przed narażeniem na pikowe stężenia pentanoli zaproponowano wartość chwilową (NDSCh) na poziomie dwukrotnej wartości NDS, czyli 150 mg/m³ . Nie ma podstaw merytorycznych do ustalenia dla pentan-1-olu i jego izomerów wartości dopuszczalnego stężenia w materiale biologicznym (DSB). Ze względu na działanie drażniące substancję oznakowano literą „I” (substancja o działaniu drażniącym). Zaproponowane wartości normatywów higienicznych powinny zabezpieczyć pracowników przed działaniem drażniącym pentan-1-olu i jego izomerów na oczy i błony śluzowe górnych dróg oddechowych, a z uwagi na to, że skutki układowe obserwowano przy narażeniu na znacznie większe stężenia/dawki, także przed działaniem układowym. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.Pentanol is an aliphatic saturated monohydroxyl alcohol (C5H11OH) with eight positional isomers. Four of them are primary alcohols, three – secondary, one – tertiary. Under normal conditions, pentanols (amyl alcohols) are colorless, flammable liquids, except for 2,2-dimethylpropan-1-ol, which is a crystalline solid. They are flammable and their vapors may form an explosive mixture with air. Amyl alcohols are used as solvents for varnishes, resins, rubbers, as well as in the processing of plastics and petroleum. They are also used for the production of synthetic flavorings and as raw materials for the production of pharmaceutical preparations. Under occupational exposure conditions, the respiratory tract is the main absorption route of pentanols. They are irritating to the respiratory system, skin and eyes of both animals and humans. In humans, especially those intolerant to lower alcohols (ethanol), pentanol isomers caused skin irritation. Its prolonged dermal application in animals caused severe irritation with erythema, atony, and also necrosis. In the body, pentanols isomers can be oxidized or conjugated with glucuronic acid. Primary alcohols are metabolized mainly to the corresponding aldehydes, followed by acids, secondary alcohols are partially oxidized to the corresponding ketones or largely glucuronidated. Tertiary alcohol (2-methyl-2-butanol) cannot form aldehyde and ketone; therefore, it is excreted unchanged in the urine as a glucuronide. The mechanism of pentanol toxicity has not been fully elucidated. Based on the results of experimental animal studies, it was shown that the critical effect of exposure to pentan-1-ol and its isomers is an irritation. The MAC value for pentanols was calculated on the basis of the RD50 value determined in mouse studies which gives an MAC-TWA value of 75 mg/m³ . In order to protect workers against exposure to peak concentrations of pentanols, the values of the maximum admissible instantaneous concentration (MAC-STEL) was set as a double of the MAC value, i.e., 150 mg/m³ . There are no substantive grounds to determine the value of admissible concentration in biological material (BEI) for pentan-1-ol and its isomers. Because of the irritating effect, the substance has been marked with the letter “I” (irritant). The proposed values of hygienic thresholds should protect workers against irritating effects of pentan-1-ol and its isomers to the eyes and mucous membranes of the upper respiratory tract, and due to the fact that systemic effects were observed at exposure to much higher concentrations/doses, also against systemic effects. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering

    Isoprene. Documentation of proposed values of occupational exposure limits (OELs)

    No full text
    Izopren jest bezbarwną cieczą o dużej lotności, powszechnie stosowaną w przemyśle, głównie w produkcji polimerów. Jest także związkiem powstającym endogennie u zwierząt i ludzi. W Polsce liczba osób narażonych na izopren w 2020 r. wynosiła 36, w tym 8 kobiet. W latach 2020-2021 nie odnotowano pracowników zatrudnionych w warunkach powyżej 0,1 wartości NDS (tj. 10 mg/m³ ), jak i przekroczeń tej wartości. Dane o toksyczności izoprenu u ludzi są nieliczne, obserwowano jedynie słabe działanie drażniące na błonę śluzową nosa, gardła i krtani. W badaniach toksyczności przewlekłej izoprenu u myszy i szczurów (narażenie inhalacyjne) stwierdzano: zaburzenia hematologiczne, atrofię jąder, zmiany przednowotworowe oraz różne nowotwory. U myszy stwierdzono także skutki neurotoksyczne i trwałą degenerację istoty białej rdzenia kręgowego. Izopren u zwierząt doświadczalnych nie wpływał na rozrodczość oraz nie wywoływał toksyczności rozwojowej. W badaniach in vivo wykazywał działanie genotoksyczne, za które odpowiadał jego metabolit – diepoksyd. Z uwagi na działanie rakotwórcze izoprenu na myszy i szczury związek uznano za rakotwórczy kategorii 1B. Za podstawę do zaproponowania wartości NDS dla izoprenu przyjęto jego działanie neurotoksyczne obserwowane u myszy narażanych inhalacyjnie. Najniższe zastosowane stężenie 70 ppm (≈ 200 mg/m³ ) uznano za wartość LOAEC dla tego skutku. Zaproponowano stężenie 8 mg/m³ (2,8 ppm) jako wartość NDS dla izoprenu oraz oznakowanie substancji symbolem „Carc. 1B”. Brak jest podstaw do wyznaczenia wartości chwilowej NDSCh oraz dopuszczalnej w materiale biologicznym DSB, jak również do adnotacji „skóra”. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.Abstract Isoprene is a colourless liquid with high volatility commonly used in industry, mainly in the production of polymers. It is also synthetized endogenously in animals and humans. In Poland, the number of people exposed to isoprene in 2020 was 36, including 8 women. In 2020-2021, there were no workers exposed above 0.1 of the MAC value (i.e. 10 mg/m³ ) or MAC value. Data on the toxicity of isoprene in humans are scarce. Only weak irritant effects on the mucous membranes of the nose, throat and larynx were observed. Effects of chronic isoprene toxicity studies in mice and rats (inhalation exposure) include haematological disorders, testicular atrophy, pre-neoplastic lesions and various tumours. Neurotoxic effects and degeneration of the white matter of the spinal cord were also observed in mice. Isoprene in experimental animals did not affect reproduction or cause developmental toxicity. In in vivo studies, it showed genotoxic effects mediated by its metabolite diepoxide. Due to the carcinogenicity of isoprene in mice and rats, the compound was considered as a carcinogen category 1B. The proposed MAC value for isoprene (8 mg/m³ (2.8 ppm)) is based on the neurotoxic effects observed in mice exposed to isoprene by inhalation (LOAEC value of 70 ppm (≈ 200 mg/m³ )). There is no basis for setting the STEL and BEI values nor for label labelling with the symbol “skin”. Isoprene is labelled with the symbol “Carc. 1B”. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering

    2,2’-Dichloro-4,4’-methylenedianiline – inhalable fraction and vapours : documentation of proposed values of occupational exposure limits (OELs)

    No full text
    2,2’-Dichloro-4,4’-metylenodianilina (MOCA) należy do grupy amin aromatycznych. Otrzymywana jest w reakcji formaldehydu i 2-chloroaniliny. Nie jest produkowana w Europie, a jej import do Europy jest szacowany na 1 000 ÷ 10 000 t/rok. MOCA wykazuje umiarkowane działanie toksyczne na zwierzęta. Mediany dawek letalnych MOCA dla gryzoni wynoszą 400 ÷ 1 140 mg/kg mc. Związek ten wywiera także umiarkowane działanie drażniące na skórę i oczy. Nie wywiera działania uczulającego. Dane na temat toksyczności podprzewlekłej i przewlekłej MOCA dla zwierząt wskazują na toksyczność wielonarządową. MOCA wykazuje działanie mutagenne i genotoksyczne zarówno w warunkach in vivo, jak i in vitro. W testach bakteryjnych wymaga obecności aktywacji metabolicznej. Powoduje uszkodzenie DNA oraz tworzy addukty z DNA. W dostępnym piśmiennictwie nie znaleziono informacji na temat wpływu MOCA na rozrodczość ludzi. Nie ma danych na temat embriotoksyczności i teratogenności tego związku. W doświadczeniu na szczurach wykazano, że MOCA nie ma wpływu na potencjał rozrodczy rodziców oraz wzrost i rozwój pre- i postnatalny potomstwa. MOCA w Unii Europejskiej ma zharmonizowaną klasyfikację jako substancja rakotwórcza kategorii zagrożenia 1B (Carc. 1B). W IARC uznano, że dowód na rakotwórcze działanie MOCA u ludzi jest niewystarczający. Wyniki badań na zwierzętach dostarczyły wystarczających dowodów rakotwórczego działania MOCA. W ogólnej ocenie IARC zaliczyła MOCA do grupy 1 – związków o działaniu rakotwórczym na ludzi. W SCOEL (2010) MOCA zaliczono do grupy A – genotoksycznych kancerogenów o działaniu bezprogowym. Obowiązujące wartości normatywów higienicznych MOCA wynoszą 0,22 ÷ 0,005 mg/m3 w wielu państwach i są oznakowane zwykle „skóra” oraz „carcinogen”. Ponadto w wielu państwach, ze względu na działania rakotwórcze MOCA, nie ustalono wartości najwyższych dopuszczalnych stężeń (NDS) MOCA. Także w Unii Europejskiej SCOEL nie ustalił wartości normatywu dla MOCA. Komisja Europejska w 2018 r. wystąpiła z wnioskiem o wpisanie wartości dopuszczalnego stężenia 0,01 mg/m3 jako wartości wiążącej (BOELV) z jednoczesną notacją „skóra” do załącznika III do wniosku dotyczącego Dyrektywy Parlamentu i Rady zmieniającej dyrektywę 2004/37/WE w sprawie ochrony pracowników przed zagrożeniem dotyczącym narażenia na działanie czynników rakotwórczych lub mutagenów podczas pracy. Zaproponowano przyjąć wartość 5 μmol MOCA/mol kreatyniny w moczu pobieranym na zakończenie zmiany roboczej jako wartość dopuszczalnego stężenia w materiale biologicznym (DSB). Jako podstawę do zaproponowania wartości NDS przyjęto działanie rakotwórcze MOCA. Ponieważ MOCA jest genotoksycznym kancerogenem o działaniu bezprogowym, wobec tego wartość normatywu higienicznego oparto o szacowanie ryzyka nowotworowego dla tego związku. Wszystkie istniejące szacowania ryzyka są oparte na podstawie wyników eksperymentu na szczurach w warunkach narażenia przewlekłego, otrzymujących MOCA w paszy, przy zastosowaniu różnych modeli obliczeniowych. Obowiązująca dotychczas w Polsce wartość NDS MOCA na poziomie 0,02 mg/m3została ustalona na podstawie modelu liniowego przy założonym ryzyku 10-4. Szacowanie ryzyka nowotworowego przy zastosowaniu modelu dwustopniowego dało wartości ryzyka odpowiednio: 4,6 10-4dla stężenia MOCA 0,02 mg/m3oraz 1,7 10-4 dla stężenia 0,01 mg/m3. Komitet ds. Oceny Ryzyka (RAC), stosując model liniowy dla narażenia inhalacyjnego na MOCA o stężeniu 0,01 mg/m³, otrzymał podobną wartość ryzyka, wynoszącą 9,65 10-5(≈ 1 10-4). Ponieważ przedstawione szacowania ryzyka dały podobne wartości dla stężenia 0,01 mg/m³ oraz Unia Europejska zaproponowała tę wartość jako stężenie wiążące, zaproponowano przyjąć w Polsce wartość NDS MOCA w powietrzu środowiska pracy na poziomie 0,01 mg/m3. Główną drogą narażenia na MOCA w warunkach zawodowych jest droga dermalna. Dlatego też poziomy MOCA w próbach moczu pracowników są lepszym wskaźnikiem dla oceny całkowitego narażenia niż pomiar stężeń MOCA w powietrzu. MOCA nie jest wykrywana w moczu osób nienarażonych zawodowo, czyli pozostaje poniżej limitu detekcji metody. Dlatego też biologiczna wartość wskaźnikowa (BGV), (ang. biological guidance value) dla MOCA powinna odpowiadać limitowi detekcji metody biomonitoringu. Jednak ze względów praktycznych zaproponowano przyjąć wartość 5 μmol MOCA/mol kreatyniny w moczu pobieranym na zakończenie zmiany roboczej jako odpowiednik wartości DSB. W warunkach przemysłowych stężenie całkowite MOCA poniżej 5 μmol/mol kreatyniny może być osiągnięte przy stosowaniu odpowiednich warunków higienicznych pracy. Ponadto, zgodnie z oceną ryzyka przedstawioną przez SCOEL, takie stężenie MOCA w moczu prowadzi do ryzyka nowotworowego wynoszącego 3 ÷ 4 10-6. Biomonitoring powinien być uzupełniony monitoringiem powietrza oraz, kiedy jest to wskazane, pomiarami zanieczyszczeń: skóry, rękawic i powierzchni roboczych, aby zidentyfikować źródła narażenia. Ponieważ narażenie przez skórę ma znaczny udział w ilości MOCA wchłoniętej do organizmu pracownika, wymagana jest notacja „skóra” (wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową). Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.,2’-Dichloro-4,4’-methylenedianiline (MOCA) is an aromatic amine. It is produced by the reaction of formaldehyde and 2-chloroaniline. It is not produced in Europe. Its import to Europe is estimated at 1 000–10 000 t/year. MOCA has a moderate toxic effect on animals; median lethal doses after oral administration to rodents are 400–1140 mg/kg bw. It has a moderate irritant effect on the skin and eyes, but no allergenic effect. Data on subchronic and chronic animal toxicity indicate multiorgan toxicity. MOCA shows mutagenic and genotoxic potential, both in vivo and in vitro. No data are available on the effects of MOCA on human reproduction or on the embryotoxicity and teratogenicity. The only rat experiment showed that MOCA has no influence on the reproductive potential of parents, and the growth and the of development of offspring. MOCA has a harmonised classification as Carc.1B. IARC considered that there were was insufficient evidence of MOCA carcinogenicity in humans and sufficient evidence of carcinogenicity in animals. In the overall assessment IARC classified MOCA into group 1 – compound carcinogenic to humans. SCOEL included MOCA to genotoxic carcinogens with non-threshold effect (group A). The values of the current hygiene standards range from 0.22 mg/m³ to 0.005 mg/m³ and are labelled “skin” and “carcinogen”. Furthermore, in many countries, no limit values have been set for MOCA due to its carcinogenicity. Also in the EU, SCOEL did not set a standard value for MOCA. In 2018 the European Commission has proposed to include a limit value of 0.01 mg/m³ as a binding value (BOELV) with the simultaneous notation of ‘skin’ in Annex III to the proposal for a Directive of the European Parliament and of the Council amending Directive 2004/37/EC on the protection of workers from the risks related to exposure to carcinogens or mutagens at work. The MAC value currently in force in Poland (0.02 mg/m³ ) was derived on the basis of the linear model with the assumed risk of 10-4. The cancer risk assessment using the two-step model gave the risk values accordingly: 4.6 - 10-4for MOCA concentration 0.02 mg/m³ and 1.7 - 10-4for 0.01 mg/m³ . A similar risk value of 9.65 - 10-5 (≈ 1 - 10-4) for inhalation exposure to 0.01 mg/m³ was assigned by RAC using a linear model. In view of the fact that the risk assessments gave compatible values for 0.01 mg/m³ and that the European Union proposed this value as BOELV, it was proposed to use a MOCA concentration in workplace air of 0.01 mg/m³ as the MAC value in Poland. The main route of exposure to MOCA in at occupational conditions is the dermal route. MOCA levels in workers’ urine are a better indicator for overall exposure assessment than measuring MOCA concentrations in workplace air. However, for practical reasons, it was proposed 5 µmol MOCA/mole creatinine in urine collected at the end of the shift as an equivalent to BEI. According to the risk assessment presented by SCOEL, this MOCA concentration in urine leads to a cancer risk of 3–4 - 10-6. Since dermal exposure accounts for a significant proportion of the MOCA taken by workers, a ‘skin’ notation is required. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering

    The effect of exposure route on the distribution and excretion of hexachloronaphthalene in rats

    No full text
    Objectives: Polychlorinated naphthalenes (PCNs), like other persistent organic pollutants (POPs), are widespread, global environmental contaminants. These compounds still represent a great environmental problem, mostly because of the risk of secondary air pollution. They are characterized by long durability and tendency to bioaccumulate, which means that they are practically ubiquitous in all environmental media and ecosystems. The aim of this study was to investigate the distribution and excretion of hexachloronaphthalene (HxCN) in rats following a single intraperitoneal or intragastrical administration. Materials and Methods: Experiments were performed on male outbred Wistar rats with body weight of 220–240 g. They were given [¹⁴C]-HxCN intraperitoneally (i.p.) or intragastrically (p.o.) in a single dose of 0.3 mg (150 kBq) per rat. The distribution of radioactivity in blood and selected organs or tissues, as well as urine and faeces excretion were traced following the administration. Results: The decline of [¹⁴C]-HxCN in plasma was biphasic and the calculated half-lives for phases I and II were ~6 and 350 h, respectively. Following 120 h after administration, ~51% (intragastrical) and ~34% (intraperitoneal) of the dose were excreted with faeces. Regardless of the administration route, the highest HxCN concentrations were found in liver and adipose tissue, where the compound showed high retention: the highest retention in liver was found 24 h after intragastrical (32%) and intraperitoneal (38%) administration while in adipose tissue ~30% retention was observed 120 h after HxCN administration regardless of its route. Conclusions: Following the calculation of the balance of total [¹⁴C]-HxCN excreted and stored, it was found that hexachloronaphthalene belongs to the compounds of a slow turnover rate, and in the case of repeated exposure it may accumulate in the rat body

    Nickel and its compounds – as Ni, excluding nickel tetracarbonyl Documentation of proposed values of occupational exposure limits (OELs)

    No full text
    Nikiel (Ni) jest metalem o charakterystycznym połysku. Znalazł zastosowanie do produkcji stopów, w galwanizacji, produkcji baterii, protez, pigmentów, w przemyśle ceramicznym i komputerowym. Skutki narażenia ludzi na nikiel i jego związki w warunkach zawodowych obejmują głównie wpływ na układ oddechowy (w tym ryzyko wystąpienia chorób nowotworowych płuc i jamy nosowej, zwłóknienie i pylicę płuc, astmę oskrzelową) oraz działanie uczulające na skórę i układ oddechowy. Szkodliwy wpływ niklu i jego związków na układ oddechowy potwierdzają wyniki badań doświadczalnych na zwierzętach. Długotrwałe narażenie na nikiel i jego związki powodowało również osłabienie układu odpornościowego oraz skutki nefro- i hepatotoksyczne. Rozpuszczalne sole niklu nie wywoływały mutacji w komórkach bakterii, ale genotoksyczność niklu i jego związków potwierdzono w badaniach z użyciem komórek eukariotycznych ssaków, przy czym jedynie przy wysokich stężeniach niklu. Nikiel i jego związki mogą przenikać przez łożysko oraz do mleka matki. Działanie rakotwórcze na układ oddechowy po narażeniu inhalacyjnym było także wykazane w badaniach na szczurach, głównie dla siarczku niklu oraz tlenku niklu. Zaproponowano przyjęcie wartości wiążących dla związków niklu ujętych w dyrektywie Parlamentu Europejskiego i Rady (UE) 2022/431 z dnia 9 marca 2022 r., zmieniającej dyrektywę 2004/37/WE, jako wartości NDS: 0,01 mg Ni/m³ (frakcja respirabilna), 0,05 mg Ni/m³ (frakcja wdychalna). Zaproponowano przyjęcie do 17 stycznia 2025 r. włącznie okresu przejściowego, podczas którego obowiązywać będzie wartość NDS wynosząca 0,1 mg/m³ w odniesieniu do frakcji wdychalnej związków niklu. Proponuje się oznakować jako substancje o działaniu: uczulającym, rakotwórczym kat. 1A – związki niklu (Carc. 1A), rakotwórczym kat. 2 – nikiel metaliczny (Carc. 2), szkodliwym na rozrodczość.Nickel (Ni) is a metal with a distinctive luster, and has found applications in alloying, electroplating, battery manufacturing, prosthetics, pigments, ceramics and computer industries. The effects of human exposure to nickel and its compounds under occupational conditions mainly include effects on the respiratory system (including the risk of cancer of the lungs and nasal cavity, fibrosis and pneumoconiosis, bronchial asthma) and sensitization of the skin and respiratory system. The harmful effects of nickel and its compounds on the respiratory system are confirmed by the results of experimental studies on animals. Long-term exposure to nickel and its compounds also caused immune system impairment and nephro- and hepatotoxic effects. Soluble nickel salts did not induce mutations in bacterial cells, but the genotoxicity of nickel and its compounds has been confirmed in studies using mammalian eukaryotic cells, with only high nickel concentrations. Nickel and its compounds can cross the placenta and into breast milk. Respiratory carcinogenic effects after inhalation exposure have also been demonstrated in rat studies, mainly in regard of nickel sulfide and nickel oxide. It has been proposed to adopt the binding values for nickel compounds included in Directive (EU) 2022/431 of the European Parliament and of the Council of March 9, 2022, amending Directive 2004/37/EC, as the NDS values: 0.01 mg Ni/m³ (respirable fraction), 0.05 mg Ni/m³ (inhalable fraction). It is proposed to adopt a transitional period up to and including January 17, 2025, during which an NDS value of 0.1 mg/m³ will apply to the inhalable fraction of nickel compounds. It is proposed to label as substances with the following effects: sensitizer, carcinogen cat. 1A – nickel compounds, Carc. 2 – carcinogenic cat. 2 – nickel metal, reproductive toxicity

    An Assessment of Metallothionein–Cadmium Binding in Rat Uterus after Subchronic Exposure Using a Long–Term Observation Model

    No full text
    Cadmium (Cd) is an environmental pollutant known to pose a public health issue. The mechanism of Cd toxicity on the uterus, including the protective role of metallothionein (MT), is still not fully understood. The aim of the study was to evaluate the degree of MT-Cd binding in the uterus of rats exposed per os to Cd at daily doses of 0.09, 0.9, 1.8 and 4.5 mg Cd/kg b.w. for 90 days. To assess the permanence of the bond, the rats were observed over long observation periods: 90 and 180 days after termination of exposure. Additionally, uterine concentration of Zn, Cu, Ca, Mg was determined. Cd leads immediately after exposure to a max. 30-fold increase in the concentration of Cd in the uterus, with only small amounts being bound to MT. After 90 days following termination of exposure, and especially after 180 days, an increase in MT-Cd concentration was noted for the three highest doses; even so, the degree of Cd binding by MT was still small. Additionally, the accumulation of Cd in the uterus disturbs the homeostasis of determined essential elements, manifested by a significant increase in Cu concentration and a decrease in Zn, Mg and Ca, especially 180 days after termination of exposure. The obtained results indicate that MT has only a slight protective role in the uterus and that Cd ions may have harmful effects not related to MT: directly on the uterine tissue, and indirectly by disturbing the homeostasis of its essential elements

    4-Chloro-2-toliloamina i jej chlorowodorek (w przeliczeniu na 4-chloro-2-toliloaminę) – frakcja wdychalna. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego

    No full text
    4-Chloro-2-toliloamina (4-COT, 4-chloro-o-toluidyna) i jej chlorowodorek są ciałami stałymi. W warunkach laboratoryjnych 4-COT jest stosowana jako barwnik w immunochemii i w biologii molekularnej. W Polsce narażenie na 4-chloro-2-toliloaminę i/lub jej chlorowodorek zgłaszały wyłącznie laboratoria. Zgłoszona do rejestru liczba narażonych na 4-COT wyniosła 262 osoby w 2012 r., a w 2017 – 12 osób. W warunkach narażenia zawodowego 4-COT wchłania się głównie przez skórę i drogi oddechowe. U osób narażonych stwierdzono działanie methemoglobinotwórcze związku oraz występowanie objawów ze strony dróg moczowych w postaci ostrego, krwotocznego zapalenia pęcherza moczowego. Mediany dawek letalnych 4-COT dla gryzoni (drogą pokarmową) wynoszą 860 ÷ 1 058 mg/kg mc. Związek ten wywiera także umiarkowane działanie drażniące na skórę i oczy. Dane na temat toksyczności podprzewlekłej i przewlekłej 4-COT dla zwierząt wskazują na toksyczność ogólnoustrojową. 4-COT wykazuje działanie mutagennie i genotoksycznie zarówno w warunkach in vivo, jak i in vitro. Powoduje uszkodzenie DNA oraz tworzy addukty z DNA. W dostępnym piśmiennictwie nie ma informacji na temat wpływu 4-COT na rozrodczość ludzi. Nie ma danych na temat embriotoksyczności i teratogenności tego związku. W doświadczeniu na myszach wykazano, że 4-COT nie ma wpływu na potencjał rozrodczy samców oraz rozwój potomstwa. U osób zawodowo narażonych na 4-COT stwierdzano istotny wzrost występowania raka pęcherza moczowego. Brak jest danych o wielkości stężeń 4-COT, na jakie osoby te były narażone. 4-COT jest związkiem rakotwórczym dla zwierząt. 4-COT ma zharmonizowaną klasyfikację jako substancja rakotwórcza kategorii zagrożenia 1B. IARC zaliczyła 4-COT do grupy 2A – związków o prawdopodobnym działaniu rakotwórczym na człowieka. W dostępnym piśmiennictwie nie znaleziono danych dotyczących wydajności i wchłaniania 4-COT różnymi drogami. U zwierząt metabolizm 4-COT może przebiegać szlakami N-acetylacji i N-hydroksylacji/N-oksydacji, przy udziale CYP1A1 i/lub CYP1A2, do aktywnych metabolitów. Związek jest wydalany głównie z moczem w postaci niezmienionej oraz metabolitów, np. kwasu 5-chloroantranilowego i 4-chloro-2-metyloacetanilidu. Nie ma danych na temat toksykokinetyki 4-COT u ludzi. W większości państw nie ustalono wartości dopuszczalnych stężeń dla 4-COT w środowisku pracy ze względu na jej potencjał rakotwórczy. Jedynym krajem europejskim, w którym ustalono wartość normatywu, jest Chorwacja, gdzie wartość NDS ustalono na poziomie 0,01 mg/m³ z jednoczesną notacją „skóra”. Podstawy ustalenia tej wartości nie są znane. Jako podstawę do zaproponowania wartości NDS przyjęto działanie rakotwórcze 4-COT. Wartość NDS wyprowadzono przy wykorzystaniu współczynnika SF = 0,27 (mg/kg-dzień)-1, ustalonego na podstawie występowania nowotworów naczyniowych u myszy. Przy założonym ryzyku R = 10-4 obliczona wartość NDS wynosi 0,02 mg/m³ . Nie znaleziono podstaw do ustalenia wartości chwilowej NDSCh i dopuszczalnego stężenia w materiale biologicznym (DSB). Narażenie przez skórę może mieć znaczny udział w ilości związku pobranej przez pracowników, wymagana jest więc notacja „skóra”. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.4-Chloro-o-toluidine (4-COT) and its hydrochloride are solids. 4-Chloro-o-toluidine is currently used as a dye in immunochemistry and molecular biology. In Poland, exposure to 4-COT and/or its hydrochloride was only reported by laboratories. The number of people exposed was 262 in 2012 and 12 in 2017. Under occupational exposure conditions, 4-COT is absorbed through the skin and airways. Methemoglobinogenic effects and acute hemorrhagic cystitis were diagnosed in exposed individuals. Median lethal doses after administration of 4-COT by the oral route to rodents were 860-1058 mg/kg b.w. The compound had a moderately irritating effect on skin and eyes. Studies of subchronic and chronic toxicity in animals indicate systemic toxicity. 4-COT had mutagenic and genotoxic effects in vivo as in vitro. It caused damage and adducts of DNA. There are no data on the effects of 4-COT on human reproduction and no data on its embryotoxicity and teratogenicity. In mice, 4-COT did not affect the reproductive potential of males or the development of their offspring. A significant increase in the incidence of bladder cancer was observed in individuals occupationally exposed to 4-COT. There are no data on the concentrations of 4-COT to which these individuals were exposed. 4-COT is an animal carcinogen. 4-COT is classified as a category 1B carcinogen. IARC has classified 4-COT into group 2A – compounds with probable carcinogenic effects in humans. No data are available on the rate and efficiency of absorption of 4-COT by different routes. In animals, the metabolism of 4-COT may be via N-acetylation and N-hydroxylation/N-oxidation routes, involving CYP1A1 and/or CYP1A2, to active metabolites. The compound is excreted mainly with urine in unaltered form and the metabolites, e.g. 5-chloroantranilic acid and 4-chloro-2-methylacetanilide. There are no data on the toxicokinetic of 4-COT in humans. In most countries, no MAC values have been established due to the carcinogenic potential of 4-COT. Only in Croatia the MAC value was set at 0.01 mg/m³ , with the notation ‘skin’. The basis for establishing this value is unknown. The carcinogenic effect of 4-COT has been used as a basis for proposing the MAC values. The value of MAC was derived from the factor SF = 0.27 (mg/kg-day)-1, determined on the basis of the occurrence of vascular tumors in mice. At the assumed risk of R = 10-4, the calculated MAC value is 0.02 mg/m³ . No basis for establishing STEL and BEI values was found. As dermal absorption may be as important as inhalation exposure, a “skin” notation is required. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering

    C.I. Basic Red 9 : documentation of proposed values of occupational exposure limits (OELs)

    No full text
    Czerwień zasadowa 9 to barwnik używany głównie do barwienia preparatów histologicznych (podstawowy składnik odczynnika Schiffa). Związek ten znajduje się na 25. miejscu Top 50 substancji rakotwórczych na podstawie liczby pracowników narażonych w Polsce, a z danych Centralnego Rejestru o Narażeniu na Substancje, Mieszaniny, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym wynika, że w 2018 r. narażonych na ten związek było 645 osób (głównie pracowników laboratoriów chemicznych oraz medycznych). W warunkach narażenia zawodowego główną drogą narażenia na tę substancję jest układ oddechowy. Za podstawę wyznaczenia wartości najwyższego dopuszczalnego stężenia (NDS) uznano wartość współczynnika nachylenia krzywej dawka–odpowiedź (SF) wyprowadzonego z dwuletnich badań rakotwórczości (narażenie po podaniu substancji z paszą, nowotwory wątroby) na samicach myszy. Przy założonym ryzyku dodatkowego nowotworu 10-4 i uwzględnieniu 40-letniego narażenia zawodowego na ten związek drogą inhalacyjną zaproponowano przyjęcie stężenia 0,02 mg/m³ jako wartości NDS dla czerwieni zasadowej 9. Brak jest natomiast podstaw merytorycznych do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) oraz dopuszczalnego stężenia w materiale biologicznym (DSB). Ze względu na brak danych dotyczących wchłaniania czerwieni zasadowej 9 drogą dermalną nie ma również podstaw do oznakowania tej substancji symbolem „skóra”. Natomiast z uwagi na przypuszczalne działanie rakotwórcze na człowieka zaproponowano oznakowanie tej substancji symbolem „Carc. 1B”. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.C.I. Basic Red 9 is a dye used in histological preparations (the basic component of Schiff ’s reagent). This compound is ranked 25th in the Top 50 carcinogenic substances based on the number of workers exposed in Poland, and the data from the Central Register of Data on Exposure to Carcinogenic or Mutagenic Chemical Substances, Mixtures, Agents or Technological Processes shows that in 2018, 645 people (mainly employees of chemical and medical laboratories) were exposed to this compound. The main route of occupational exposure to this substance is the respiratory system. The MAC value was based on the slope factor of the dose-response curve derived from a two-year carcinogenicity study on female mice (liver cancer). With the assumed risk of additional cancer of 10-4 and 40 years of occupational exposure to this compound by inhalation, it was proposed to set a value of 0.02 mg/m³ as the MAC for C.I. Basic Red 9. There is no basis for setting the STEL and BEI values. Due to the lack of data on the absorption of C.I. Basic Red 9 by dermal route, there is also no basis to label this substance with the symbol „skin”. However, because of the supposed carcinogenic effect on humans, it is proposed to label this substance with the symbol „Carc. 1B”. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering

    The effect of prenatal exposure on disposition of hexachloronaphthalene in female Wistar rats and fetal compartment

    No full text
    Objectives Due to structural and toxicological similarities to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polychlorinated naphthalenes (PCNs) were included in the Stockholm Convention on Persistent Organic Pollutants (POPs) in 2015. Hexachloronaphthalene (HxCN) is considered to be one of the most toxic congeners of PCNs. The objective of this study was to determine the maternal and fetal tissue concentrations of hexachloronaphthalene after a single administration. Material and Methods Pregnant female Outbred Wistar rats were used for the study. The [ 14 C]-HxCN was administered in a single oral dose of 0.3 mg/rat (150 kBq/rat) on gestational day 17 (GD17), GD18 or GD19. All dams were sacrificed on GD20. The blood and selected tissue samples taken from mothers and fetuses 24 h, 48 h or 72 h after exposure were evaluated for the distribution of HxCN. Results Maximum concentrations of HxCN in pregnant rats were found in the liver and adipose tissue. Relatively high levels of HxCN were also reported in the spleen, ovaries, adrenal glands and uterus, as well as in the sciatic nerve, brain and kidneys. Hexachloronaphthalene penetrates through the blood-brain barrier (BBB), as evidenced by twice the concentration in the brain compared to the blood concentration, and through the placental barrier, as indicated by the level of maternal-fetal compartment (placenta, amniotic fluid, litter). Among the examined fetal tissues, the highest levels of HxCN were found in the kidneys and in the brain. The concentrations in these organs were higher than that found in the maternal blood. Conclusions This paper is the first to detail the concentrations of HxCN in the maternal tissues and the transplacental transfer of the tested compound to the fetuses. The exposure of pregnant rats to HxCN results in its accumulation in the maternal liver, fat tissue, reproductive and nervous system, and particularly in the fetal brain. This demonstrates both the effective absorption and significant systemic accumulation which could lead to negative health implications. Int J Occup Med Environ Health 2018;31(5):685–69
    corecore