4 research outputs found
Farnesol-Induced Apoptosis in Candida albicans Is Mediated by Cdr1-p Extrusion and Depletion of Intracellular Glutathione
Farnesol is a key derivative in the sterol biosynthesis pathway in eukaryotic cells previously identified as a quorum sensing molecule in the human fungal pathogen Candida albicans. Recently, we demonstrated that above threshold concentrations, farnesol is capable of triggering apoptosis in C. albicans. However, the exact mechanism of farnesol cytotoxicity is not fully elucidated. Lipophilic compounds such as farnesol are known to conjugate with glutathione, an antioxidant crucial for cellular detoxification against damaging compounds. Glutathione conjugates act as substrates for ATP-dependent ABC transporters and are extruded from the cell. To that end, this current study was undertaken to validate the hypothesis that farnesol conjugation with intracellular glutathione coupled with Cdr1p-mediated extrusion of glutathione conjugates, results in total glutathione depletion, oxidative stress and ultimately fungal cell death. The combined findings demonstrated a significant decrease in intracellular glutathione levels concomitant with up-regulation of CDR1 and decreased cell viability. However, addition of exogenous reduced glutathione maintained intracellular glutathione levels and enhanced viability. In contrast, farnesol toxicity was decreased in a mutant lacking CDR1, whereas it was increased in a CDR1-overexpressing strain. Further, gene expression studies demonstrated significant up-regulation of the SOD genes, primary enzymes responsible for defense against oxidative stress, with no changes in expression in CDR1. This is the first study describing the involvement of Cdr1p-mediated glutathione efflux as a mechanism preceding the farnesol-induced apoptotic process in C. albicans. Understanding of the mechanisms underlying farnesol-cytotoxicity in C. albicans may lead to the development of this redox-cycling agent as an alternative antifungal agent
Genetic and Phenotypic Heterogeneity in Familial Lecithin: Cholesterol Acyltransferase (LCAT) Deficiency Six Newly Identified Defective Alleles Further Contribute to the Structural Heterogeneity in This Disease
The presence of lecithin:cholesterol acyltransferase (LCAT) deficiency in six probands from five families originating from four different countries was confirmed by the absence or near absence of LCAT activity. Also, other invariate symptoms of LCAT deficiency, a significant increase of unesterified cholesterol in plasma lipoproteins and the reduction of plasma HDLcholesterol to levels below one-tenth of normal, were present in all probands. In the probands from two families, no mass was detectable, while in others reduced amounts of LCAT mass indicated the presence of a functionally inactive protein. Sequence analysis identified homozygous missense or nonsense mutations in four probands. Two probands from one family both were found to be compound heterozygotes for a missense mutation and for a single base insertion causing a readin
Recommended from our members
Workshop on induced Seismicity due to fluid injection/production from Energy-Related Applications
Geothermal energy, carbon sequestration, and enhanced oil and gas recovery have a clear role in U.S. energy policy, both in securing cost-effective energy and reducing atmospheric CO{sub 2} accumulations. Recent publicity surrounding induced seismicity at several geothermal and oil and gas sites points out the need to develop improved standards and practices to avoid issues that may unduly inhibit or stop the above technologies from fulfilling their full potential. It is critical that policy makers and the general community be assured that EGS, CO{sub 2} sequestration, enhanced oil/gas recovery, and other technologies relying on fluid injections, will be designed to reduce induced seismicity to an acceptable level, and be developed in a safe and cost-effective manner. Induced seismicity is not new - it has occurred as part of many different energy and industrial applications (reservoir impoundment, mining, oil recovery, construction, waste disposal, conventional geothermal). With proper study/research and engineering controls, induced seismicity should eventually allow safe and cost-effective implementation of any of these technologies. In addition, microseismicity is now being used as a remote sensing tool for understanding and measuring the success of injecting fluid into the subsurface in a variety of applications, including the enhancement of formation permeability through fracture creation/reactivation, tracking fluid migration and storage, and physics associated with stress redistribution. This potential problem was envisaged in 2004 following observed seismicity at several EGS sites, a study was implemented by DOE to produce a white paper and a protocol (Majer et al 2008) to help potential investors. Recently, however, there have been a significant number of adverse comments by the press regarding induced seismicity which could adversely affect the development of the energy sector in the USA. Therefore, in order to identify critical technology and research that was necessary not only to make fluid injections safe, but an economic asset, DOE organized a series of workshops. The first workshop was held on February 4, 2010, at Stanford University. A second workshop will be held in mid-2010 to address the critical elements of a 'best practices/protocol' that industry could use as a guide to move forward with safe implementation of fluid injections/production for energy-related applications, i.e., a risk mitigation plan, and specific recommendations for industry to follow. The objectives of the first workshop were to identify critical technology and research needs/approaches to advance the understanding of induced seismicity associated with energy related fluid injection/production, such that: (1) The risk associated with induced seismicity can be reduced to a level that is acceptable to the public, policy makers, and regulators; and (2) Seismicity can be utilized/controlled to monitor, manage, and optimize the desired fluid behavior in a cost effective fashion. There were two primary goals during the workshop: (1) Identify the critical roadblocks preventing the necessary understanding of human-induced seismicity. These roadblocks could be technology related (better imaging of faults and fractures, more accurate fluid tracking, improved stress measurements, etc.), research related (fundamental understanding of rock physical properties and geochemical fluid/rock interactions, development of improved constitutive relations, improved understanding of rock failure, improved data processing and modeling, etc.), or a combination of both. (2) After laying out the roadblocks the second goal was to identify technology development and research needs that could be implemented in the near future to address the above objectives