13 research outputs found

    Beyond the looking glass: recent advances in understanding the impact of environmental exposures on neuropsychiatric disease

    Get PDF
    The etiologic pathways leading to neuropsychiatric diseases remain poorly defined. As genomic technologies have advanced over the past several decades, considerable progress has been made linking neuropsychiatric disorders to genetic underpinnings. Interest and consideration of nongenetic risk factors (e.g., lead exposure and schizophrenia) have, in contrast, lagged behind heritable frameworks of explanation. Thus, the association of neuropsychiatric illness to environmental chemical exposure, and their potential interactions with genetic susceptibility, are largely unexplored. In this review, we describe emerging approaches for considering the impact of chemical risk factors acting alone and in concert with genetic risk, and point to the potential role of epigenetics in mediating exposure effects on transcription of genes implicated in mental disorders. We highlight recent examples of research in nongenetic risk factors in psychiatric disorders that point to potential shared biological mechanisms—synaptic dysfunction, immune alterations, and gut–brain interactions. We outline new tools and resources that can be harnessed for the study of environmental factors in psychiatric disorders. These tools, combined with emerging experimental evidence, suggest that there is a need to broadly incorporate environmental exposures in psychiatric research, with the ultimate goal of identifying modifiable risk factors and informing new treatment strategies for neuropsychiatric disease

    In vivo cytochrome P450 activity alterations in diabetic nonalcoholic steatohepatitis mice

    No full text
    Nonalcoholic steatohepatitis (NASH) has been identified as a source of significant inter individual variation in drug metabolism. A previous ex vivo study demonstrated significant changes in hepatic Cytochrome P450 (CYP) activity in human NASH. This study evaluated the in vivo activities of multiple CYP isoforms simultaneously in prominent diabetic NASH mouse models. The pharmacokinetics of CYP selective substrates: caffeine, losartan, and omeprazole changed significantly in a diabetic NASH mouse model, indicating attenuation of the activity of Cyp1a2 and Cyp2c29, respectively. Decreased mRNA expression of Cyp1a2 and Cyp2c29, as well as an overall decrease in CYP protein expression, was found in the diabetic NASH mice. Overall, these data suggest that the diabetic NASH model only partially recapitulates the human ex vivo CYP alteration pattern. Therefore, in vivo determination of the effects of NASH on CYP activity should be conducted in human, and more appropriate models are required for future drug metabolism studies in NASH.National Institutes of Health [ES006694, HD062489]; National Institute of Environmental Health Science. Toxicology Training Grant [ES007091]12 month embargo; Version of record online: 6 October 2016This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Modeling human nonalcoholic steatohepatitis-associated changes in drug transporter expression using experimental rodent models

    No full text
    Nonalcoholic fatty liver disease is a prevalent form of chronic liver disease that can progress to the more advanced stage of nonalcoholic steatohepatitis (NASH). NASH has been shown to alter drug transporter regulation and may have implications in the development of adverse drug reactions. Several experimental rodent models have been proposed for the study of NASH, but no single model fully recapitulates all aspects of the human disease. The purpose of the current study was to determine which experimental NASH model best reflects the known alterations in human drug transporter expression to enable more accurate drug disposition predictions in NASH. Both rat and mouse NASH models were used in this investigation and include the methionine and choline deficient (MCD) diet model, atherogenic diet model, ob/ob and db/db mice, and fa/fa rats. Pathologic scoring evaluations demonstrated that MCD and atherogenic rats, as well as ob/ob and db/db mice, developed NASH. Liver mRNA and protein expression analyses of drug transporters showed that in general, efflux transporters were induced and uptake transporters were repressed in the rat MCD and the mouse ob/ob and db/db models. Lastly, concordance analyses suggest that both the mouse and rat MCD models as well as mouse ob/ob and db/db NASH models show the most similarity to human transporter mRNA and protein expression. These results suggest that the MCD rat and mouse model, as well as the ob/ob and db/db mouse models, may be useful for predicting altered disposition of drugs with similar kinetics across humans and rodents

    Mechanism of Altered Metformin Distribution in Nonalcoholic Steatohepatitis

    No full text
    Metformin is an antihyperglycemic drug that is widely prescribed for type 2 diabetes mellitus and is currently being investigated for the treatment of nonalcoholic steatohepatitis (NASH). NASH is known to alter hepatic membrane transporter expression and drug disposition similarly in humans and rodent models of NASH. Metformin is almost exclusively eliminated through the kidney primarily through active secretion mediated by Oct1, Oct2, and Mate1. The purpose of this study was to determine how NASH affects kidney transporter expression and metformin pharmacokinetics. A single oral dose of [(14)C]metformin was administered to C57BL/6J (wild type [WT]) and diabetic ob/ob mice fed either a control diet or a methionine- and choline-deficient (MCD) diet. Metformin plasma concentrations were slightly increased in the WT/MCD and ob/control groups, whereas plasma concentrations were 4.8-fold higher in ob/MCD mice compared with WT/control. The MCD diet significantly increased plasma half-life and mean residence time and correspondingly decreased oral clearance in both genotypes. These changes in disposition were caused by ob/ob- and MCD diet-specific decreases in the kidney mRNA expression of Oct2 and Mate1, whereas Oct1 mRNA expression was only decreased in ob/MCD mice. These results indicate that the diabetic ob/ob genotype and the MCD disease model alter kidney transporter expression and alter the pharmacokinetics of metformin, potentially increasing the risk of drug toxicity

    Renal xenobiotic transporter expression is altered in multiple experimental models of nonalcoholic steatohepatitis

    No full text
    Nonalcoholic fatty liver disease is the most common chronic liver disease, which can progress to nonalcoholic steatohepatitis (NASH). Previous investigations demonstrated alterations in the expression and activity of hepatic drug transporters in NASH. Moreover, studies using rodent models of cholestasis suggest that compensatory changes in kidney transporter expression occur to facilitate renal excretion during states of hepatic stress; however, little information is currently known regarding extrahepatic regulation of drug transporters in NASH. The purpose of the current study was to investigate the possibility of renal drug transporter regulation in NASH across multiple experimental rodent models. Both rat and mouse NASH models were used in this investigation and include: the methionine and choline-deficient (MCD) diet, atherogenic diet, fa/fa rat, ob/ob and db/db mice. Histologic and pathologic evaluations confirmed that the MCD and atherogenic rats as well as the ob/ob and db/db mice all developed NASH. In contrast, the fa/fa rats did not develop NASH but did develop extensive renal injury compared with the other models. Renal mRNA and protein analyses of xenobiotic transporters suggest that compensatory changes occur in NASH to favor increased xenobiotic secretion. Specifically, both apical efflux and basolateral uptake transporters are induced, whereas apical uptake transporter expression is repressed. These results suggest that NASH may alter the expression and potentially function of renal drug transporters, thereby impacting drug elimination mechanisms in the kidney

    Mechanistic basis of altered morphine disposition in nonalcoholic steatohepatitis

    Get PDF
    Morphine is metabolized in humans to morphine-3-glucuronide (M3G) and the pharmacologically active morphine-6-glucuronide (M6G). The hepatobiliary disposition of both metabolites relies upon multidrug resistance-associated proteins Mrp3 and Mrp2, located on the sinusoidal and canalicular membrane, respectively. Nonalcoholic steatohepatitis (NASH), the severe stage of nonalcoholic fatty liver disease, alters xenobiotic metabolizing enzyme and transporter function. The purpose of this study was to determine whether NASH contributes to the large interindividual variability and postoperative adverse events associated with morphine therapy. Male Sprague-Dawley rats were fed a control diet or a methionine- and choline-deficient diet to induce NASH. Radiolabeled morphine (2.5 mg/kg, 30 µCi/kg) was administered intravenously, and plasma and bile (0-150 or 0-240 minutes), liver and kidney, and cumulative urine were analyzed for morphine and M3G. The antinociceptive response to M6G (5 mg/kg) was assessed (0-12 hours) after direct intraperitoneal administration since rats do not produce M6G. NASH caused a net decrease in morphine concentrations in the bile and plasma and a net increase in the M3G/morphine plasma area under the concentration-time curve ratio, consistent with upregulation of UDP-glucuronosyltransferase Ugt2b1. Despite increased systemic exposure to M3G, NASH resulted in decreased biliary excretion and hepatic accumulation of M3G. This shift toward systemic retention is consistent with the mislocalization of canalicular Mrp2 and increased expression of sinusoidal Mrp3 in NASH and may correlate to increased antinociception by M6G. Increased metabolism and altered transporter regulation in NASH provide a mechanistic basis for interindividual variability in morphine disposition that may lead to opioid-related toxicity

    Mechanistic Basis of Altered Morphine Disposition in Nonalcoholic Steatohepatitis

    No full text
    Morphine is metabolized in humans to morphine-3-glucuronide (M3G) and the pharmacologically active morphine-6-glucuronide (M6G). The hepatobiliary disposition of both metabolites relies upon multidrug resistance-associated proteins Mrp3 and Mrp2, located on the sinusoidal and canalicular membrane, respectively. Nonalcoholic steatohepatitis (NASH), the severe stage of non-alcoholic fatty liver disease, alters xenobiotic metabolizing enzyme and transporter function. The purpose of this study was to determine whether NASH contributes to the large interindivid-ual variability and postoperative adverse events associated with morphine therapy. Male Sprague-Dawley rats were fed a control diet or a methionine- and choline-deficient diet to induce NASH. Radiolabeled morphine (2.5 mg/kg, 30 mCi/kg) was administered intravenously, and plasma and bile (0–150 or 0–240minutes), live

    Renal Xenobiotic Transporter Expression is Altered in Multiple Experimental Models of Nonalcoholic Steatohepatitis

    No full text
    Nonalcoholic fatty liver disease is the most common chronic liver disease, which can progress to nonalcoholic steatohepatitis (NASH). Previous investigations demonstrated alterations in the expression and activity of hepatic drug transporters in NASH. Moreover, studies using rodent models of cholestasis suggest that compensatory changes in kidney transporter expression occur to facilitate renal excretion during states of hepatic stress; however, little information is currently known regarding extrahepatic regulation of drug transporters in NASH. The purpose of the current study was to investigate the possibility of renal drug transporter regulation in NASH across multiple experimental rodent models. Both rat and mouse NASH models were used in this investigation and include: the methionine and choline-deficient (MCD) diet, atherogenic diet, fa/fa rat, ob/ob and db/db mice. Histologic and pathologic evaluations confirmed that the MCD and atherogenic rats as well as the ob/ob and db/db mice all developed NASH. In contrast, the fa/fa rats did not develop NASH but did develop extensive renal injury compared with the other models. Renal mRNA and protein analyses of xenobiotic transporters suggest that compensatory changes occur in NASH to favor increased xenobiotic secretion. Specifically, both apical efflux and basolateral uptake transporters are induced, whereas apical uptake transporter expression is repressed. These results suggest that NASH may alter the expression and potentially function of renal drug transporters, thereby impacting drug elimination mechanisms in the kidney
    corecore