40 research outputs found
Delineating groundwater-surface water exchange flux using temperature-time series analysis methods
Groundwater-surface water interactions can play a crucial role in river-, riparian and wetland management. Their delineation and quantification at various spatial and temporal scales has become an important aspect in the study of contaminant transport and attenuation processes at the groundwater-surface water interface. One of the main parameters of interest is the groundwater-surface water exchange flux, which provides indications regarding stream-aquifer connectivity, the local flow regime as well as hydrogeological properties of the streambed. One of the methods to assess vertical exchange flux is through the analysis of temperature time-series. In this paper we delineate vertical exchange flux from temperature-time series collected at a Belgian River by comparing established numerical and analytical techniques with a novel approach. Results indicate a spatial variability of vertical fluxes over two orders of magnitude at the site
A hierarchical approach on groundwater-surface water interaction in wetlands along the upper Biebrza River, Poland
This paper presents a hierarchical approach for quantifying
and interpreting groundwater-surface water interaction in
space and time. The results for the upper Biebrza show predominantly
upward water fluxes, sections of recharge, however,
exist along the reach. The fluxes depend more on hydraulic
gradients than on riverbed conductivity. This indicates
that the fluvio-plain scale is required for interpreting
the exchange fluxes, which are estimated on a local scale.
The paper shows that a conceptual framework is necessary
for understanding the groundwater-surface water interaction
processes, where the exchange fluxes are influenced by local
factors like the composition of the riverbed and the position
of the measurement on a local scale, and by regional factors
like the hydrogeology and topography on a fluvio-plain scale.
The hierarchical methodology increases the confidence in
the estimated exchange fluxes and improves the process understanding.
The accuracy of the measurements and related
uncertainties, however, remain challenges for wetland environments.
Gaining quantitative information on groundwatersurface
water interaction can improve modeling confidence
and as a consequence helps to develop effective procedures
for management and conservation of valuable groundwater
dependent wetlands