7 research outputs found

    A new agent for the treatment of noninfectious uveitis: rationale and design of three LUMINATE (Lux Uveitis Multicenter Investigation of a New Approach to Treatment) trials of steroid-sparing voclosporin

    Get PDF
    Uveitis is an inflammatory, putative Th1-mediated autoimmune disease that affects various parts of the eye and is a leading cause of visual loss. Currently available therapies are burdened with toxicities and/or lack definitive evidence of efficacy. Voclosporin, a rationally designed novel calcineurin inhibitor, exhibits a favorable safety profile, a strong correlation between pharmacokinetic and pharmacodynamic response, and a wide therapeutic window. The LUMINATE (Lux Uveitis Multicenter Investigation of a New Approach to TrEatment) clinical development program was initiated in 2007 to assess the safety and efficacy of voclosporin for the treatment, maintenance, and control of all forms of noninfectious uveitis. If LUMINATE is successful, voclosporin will become the first Food and Drug Administration-approved corticosteroid-sparing agent for this condition

    Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration

    Get PDF
    PURPOSE: Transplantation of human embryonic stem cell (hESC)-derived retinal pigment epithelial (RPE) cells offers the potential for benefit in macular degeneration. Previous trials have reported improved visual acuity (VA), but lacked detailed analysis of retinal structure and function in the treated area. DESIGN: Phase 1/2 open-label dose-escalation trial to evaluate safety and potential efficacy (clinicaltrials.gov identifier, NCT01469832). PARTICIPANTS: Twelve participants with advanced Stargardt disease (STGD1), the most common cause of macular degeneration in children and young adults. METHODS: Subretinal transplantation of up to 200 000 hESC-derived RPE cells with systemic immunosuppressive therapy for 13 weeks. MAIN OUTCOME MEASURES: The primary end points were the safety and tolerability of hESC-derived RPE cell administration. We also investigated evidence of the survival of transplanted cells and measured retinal structure and function using microperimetry and spectral-domain OCT. RESULTS: Focal areas of subretinal hyperpigmentation developed in all participants in a dose-dependent manner in the recipient retina and persisted after withdrawal of systemic immunosuppression. We found no evidence of uncontrolled proliferation or inflammatory responses. Borderline improvements in best-corrected VA in 4 participants either were unsustained or were matched by a similar improvement in the untreated contralateral eye. Microperimetry demonstrated no evidence of benefit at 12 months in the 12 participants. In one instance at the highest dose, localized retinal thinning and reduced sensitivity in the area of hyperpigmentation suggested the potential for harm. Participant-reported quality of life using the 25-item National Eye Institute Visual Function Questionnaire indicated no significant change. CONCLUSIONS: Subretinal hyperpigmentation is consistent with the survival of viable transplanted hESC-derived RPE cells, but may reflect released pigment in their absence. The findings demonstrate the value of detailed analysis of spatial correlation of retinal structure and function in determining with appropriate sensitivity the impact of cell transplantation and suggest that intervention in early stage of disease should be approached with caution. Given the slow rate of progressive degeneration at this advanced stage of disease, any protection against further deterioration may be evident only after a more extended period of observation

    First-in-Human Gene Therapy Trial of AAV8-hCARp.hCNGB3 in Adults and Children With CNGB3-associated Achromatopsia

    Get PDF
    PURPOSE: To assess the safety and efficacy of AAV8-hCARp.hCNGB3 in participants with CNGB3-associated achromatopsia (ACHM). DESIGN: Prospective, phase 1/2 (NCT03001310), open-label, nonrandomized clinical trial. METHODS: The study enrolled 23 adults and children with CNGB3-associated ACHM. In the dose-escalation phase, adult participants were administered 1 of 3 AAV8-hCARp.hCNGB3 dose levels in the worse-seeing eye (up to 0.5 mL). After a maximum tolerated dose was established in adults, an expansion phase was conducted in children ≥3 years old. All participants received topical and oral corticosteroids. Safety and efficacy parameters, including treatment-related adverse events and visual acuity, retinal sensitivity, color vision, and light sensitivity, were assessed for 6 months. RESULTS: AAV8-hCARp.hCNGB3 (11 adults, 12 children) was safe and generally well tolerated. Intraocular inflammation occurred in 9 of 23 participants and was mainly mild or moderate in severity. Severe cases occurred primarily at the highest dose. Two events were considered serious and dose limiting. All intraocular inflammation resolved following topical and systemic steroids. There was no consistent pattern of change from baseline to week 24 for any efficacy assessment. However, favorable changes were observed for individual participants across several assessments, including color vision (n = 6/23), photoaversion (n = 11/20), and vision-related quality-of-life questionnaires (n = 21/23). CONCLUSIONS: AAV8-hCARp.hCNGB3 for CNGB3-associated ACHM demonstrated an acceptable safety and tolerability profile. Improvements in several efficacy parameters indicate that AAV8-hCARp.hCNGB3 gene therapy may provide benefit. These findings, with the development of additional sensitive and quantitative end points, support continued investigation

    First-in-Human Gene Therapy Trial of AAV8-hCARp.hCNGB3 in Adults and Children With CNGB3-associated Achromatopsia

    Get PDF
    Purpose: To assess the safety and efficacy of AAV8-hCARp.hCNGB3 in participants with CNGB3-associated achromatopsia (ACHM). Design: Prospective, phase 1/2 (NCT03001310), open-label, nonrandomized clinical trial. Methods: The study enrolled 23 adults and children with CNGB3-associated ACHM. In the dose-escalation phase, adult participants were administered 1 of 3 AAV8-hCARp.hCNGB3 dose levels in the worse-seeing eye (up to 0.5 mL). After a maximum tolerated dose was established in adults, an expansion phase was conducted in children ≥3 years old. All participants received topical and oral corticosteroids. Safety and efficacy parameters, including treatment-related adverse events and visual acuity, retinal sensitivity, color vision, and light sensitivity, were assessed for 6 months. Results: AAV8-hCARp.hCNGB3 (11 adults, 12 children) was safe and generally well tolerated. Intraocular inflammation occurred in 9 of 23 participants and was mainly mild or moderate in severity. Severe cases occurred primarily at the highest dose. Two events were considered serious and dose limiting. All intraocular inflammation resolved following topical and systemic steroids. There was no consistent pattern of change from baseline to week 24 for any efficacy assessment. However, favorable changes were observed for individual participants across several assessments, including color vision (n = 6/23), photoaversion (n = 11/20), and vision-related quality-of-life questionnaires (n = 21/23). Conclusions: AAV8-hCARp.hCNGB3 for CNGB3-associated ACHM demonstrated an acceptable safety and tolerability profile. Improvements in several efficacy parameters indicate that AAV8-hCARp.hCNGB3 gene therapy may provide benefit. These findings, with the development of additional sensitive and quantitative end points, support continued investigation.</p

    Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies

    No full text
    Since they were first derived more than three decades ago, embryonic stem cells have been proposed as a source of replacement cells in regenerative medicine, but their plasticity and unlimited capacity for self-renewal raises concerns about their safety, including tumour formation ability, potential immune rejection, and the risk of differentiating into unwanted cell types. We report the medium-term to long-term safety of cells derived from human embryonic stem cells (hESC) transplanted into patients. In the USA, two prospective phase 1/2 studies were done to assess the primary endpoints safety and tolerability of subretinal transplantation of hESC-derived retinal pigment epithelium in nine patients with Stargardt's macular dystrophy (age >18 years) and nine with atrophic age-related macular degeneration (age >55 years). Three dose cohorts (50,000, 100,000, and 150,000 cells) were treated for each eye disorder. Transplanted patients were followed up for a median of 22 months by use of serial systemic, ophthalmic, and imaging examinations. The studies are registered with ClinicalTrials.gov, numbers NCT01345006 (Stargardt's macular dystrophy) and NCT01344993 (age-related macular degeneration). There was no evidence of adverse proliferation, rejection, or serious ocular or systemic safety issues related to the transplanted tissue. Adverse events were associated with vitreoretinal surgery and immunosuppression. 13 (72%) of 18 patients had patches of increasing subretinal pigmentation consistent with transplanted retinal pigment epithelium. Best-corrected visual acuity, monitored as part of the safety protocol, improved in ten eyes, improved or remained the same in seven eyes, and decreased by more than ten letters in one eye, whereas the untreated fellow eyes did not show similar improvements in visual acuity. Vision-related quality-of-life measures increased for general and peripheral vision, and near and distance activities, improving by 16-25 points 3-12 months after transplantation in patients with atrophic age-related macular degeneration and 8-20 points in patients with Stargardt's macular dystrophy. The results of this study provide the first evidence of the medium-term to long-term safety, graft survival, and possible biological activity of pluripotent stem cell progeny in individuals with any disease. Our results suggest that hESC-derived cells could provide a potentially safe new source of cells for the treatment of various unmet medical disorders requiring tissue repair or replacement. Advanced Cell Technology
    corecore