60 research outputs found
Analysis of recent segmental duplications in the bovine genome
Background: Duplicated sequences are an important source of gene innovation and structural variation within mammalian genomes. We performed the first systematic and genome-wide analysis of segmental duplications in the modern domesticated cattle (Bos taurus). Using two distinct computational analyses, we estimated that 3.1% (94.4 Mb) of the bovine genome consists of recently duplicated sequences (>= 1 kb in length, >= 90% sequence identity). Similar to other mammalian draft assemblies, almost half (47% of 94.4 Mb) of these sequences have not been assigned to cattle chromosomes. Results: In this study, we provide the first experimental validation large duplications and briefly compared their distribution on two independent bovine genome assemblies using fluorescent in situ hybridization (FISH). Our analyses suggest that the (75-90%) of segmental duplications are organized into local tandem duplication clusters. Along with rodents and carnivores, these results now confidently establish tandem duplications as the most likely mammalian archetypical organization, in contrast to humans and great ape species which show a preponderance of interspersed duplications. A cross-species survey of duplicated genes and gene families indicated that duplication, positive selection and gene conversion have shaped primates, rodents, carnivores and ruminants to different degrees for their speciation and adaptation. We identified that bovine segmental duplications corresponding to genes are significantly enriched for specific biological functions such as immunity, digestion, lactation and reproduction. Conclusion: Our results suggest that in most mammalian lineages segmental duplications are organized in a tandem configuration. Segmental duplications remain problematic for genome and assembly and we highlight genic regions that require higher quality sequence characterization. This study provides insights into mammalian genome evolution and generates a valuable resource for cattle genomics research
MYEOV gene overexpression in primary plasma cell leukemia with t(11;14)(q13;q32)
Primary plasma cell leukemia (pPCL) is an uncommon form of plasma cell dyscrasia, and the most aggressive of the human monoclonal gammopathies. The t(11;14)(q13;q32) rearrangement is the most common alteration in pPCL, promoting cyclin D1 (CCND1) gene overexpression caused by its juxtaposition with the immunoglobulin heavy locus chromosome region. The myeloma overexpressed (MYEOV) gene maps very close to the CCND1 gene on chromosome 11, but its overexpression is rarely observed in multiple myeloma. The present study describes a case of pPCL with t(11;14) characterized by a breakpoint on der(11), unlike the one usually observed. Droplet digital polymerase chain reaction analysis revealed overexpression of CCND1 and MYEOV. To the best of our knowledge, MYEOV gene overexpression has never been previously described in pPCL
- …