262 research outputs found
Remodelling of human atrial K+ currents but not ion channel expression by chronic β-blockade
Chronic β-adrenoceptor antagonist (β-blocker) treatment in patients is associated with a potentially anti-arrhythmic prolongation of the atrial action potential duration (APD), which may involve remodelling of repolarising K+ currents. The aim of this study was to investigate the effects of chronic β-blockade on transient outward, sustained and inward rectifier K+ currents (ITO, IKSUS and IK1) in human atrial myocytes and on the expression of underlying ion channel subunits. Ion currents were recorded from human right atrial isolated myocytes using the whole-cell-patch clamp technique. Tissue mRNA and protein levels were measured using real time RT-PCR and Western blotting. Chronic β-blockade was associated with a 41% reduction in ITO density: 9.3 ± 0.8 (30 myocytes, 15 patients) vs 15.7 ± 1.1 pA/pF (32, 14), p < 0.05; without affecting its voltage-, time- or rate dependence. IK1 was reduced by 34% at −120 mV (p < 0.05). Neither IKSUS, nor its increase by acute β-stimulation with isoprenaline, was affected by chronic β-blockade. Mathematical modelling suggested that the combination of ITO- and IK1-decrease could result in a 28% increase in APD90. Chronic β-blockade did not alter mRNA or protein expression of the ITO pore-forming subunit, Kv4.3, or mRNA expression of the accessory subunits KChIP2, KChAP, Kvβ1, Kvβ2 or frequenin. There was no reduction in mRNA expression of Kir2.1 or TWIK to account for the reduction in IK1. A reduction in atrial ITO and IK1 associated with chronic β-blocker treatment in patients may contribute to the associated action potential prolongation, and this cannot be explained by a reduction in expression of associated ion channel subunits
The CUAVA-2 CubeSat: A Second Attempt to Fly the Remote Sensing, Space Weather Study and Earth Observation Instruments
This paper presents the 6U CubeSat mission conducted by the ARC Training Centre for CubeSats, UAVs, and their Applications (CUAVA) at the University of Sydney. CUAVA-2, the second CubeSat project following the CUAVA-1 mission, builds upon lessons learned from its predecessor. CUAVA-1, the first satellite launched by CUAVA, carried first-generation payloads for earth observation goals and technology demonstrations but experienced communication difficulties. A fault root analysis was performed on CUAVA-1 to inform the design of CUAVA-2. The CUAVA-2 satellite incorporates a hyperspectral imager for applications in agriculture, forestry, coastal and marine environments, urban areas, water hazard assessment, and mineral exploration. It also includes a GPS reflectometry payload for remote sea state determination, as well as secondary payloads for technology demonstration and space weather study. This paper discusses the fault analysis findings, lessons learned, and design inputs from CUAVA-1, showcasing their integration into the CUAVA-2 satellite, which is scheduled for launch in February 2024
Estimating Incidence Curves of Several Infections Using Symptom Surveillance Data
We introduce a method for estimating incidence curves of several co-circulating infectious pathogens, where each infection has its own probabilities of particular symptom profiles. Our deconvolution method utilizes weekly surveillance data on symptoms from a defined population as well as additional data on symptoms from a sample of virologically confirmed infectious episodes. We illustrate this method by numerical simulations and by using data from a survey conducted on the University of Michigan campus. Last, we describe the data needs to make such estimates accurate
Reconstruction of cell population dynamics using CFSE
Background: Quantifying cell division and death is central to many studies in the biological
sciences. The fluorescent dye CFSE allows the tracking of cell division in vitro and in vivo and
provides a rich source of information with which to test models of cell kinetics. Cell division and
death have a stochastic component at the single-cell level, and the probabilities of these occurring
in any given time interval may also undergo systematic variation at a population level. This gives rise
to heterogeneity in proliferating cell populations. Branching processes provide a natural means of
describing this behaviour.
Results: We present a likelihood-based method for estimating the parameters of branching
process models of cell kinetics using CFSE-labeling experiments, and demonstrate its validity using
synthetic and experimental datasets. Performing inference and model comparison with real CFSE
data presents some statistical problems and we suggest methods of dealing with them.
Conclusion: The approach we describe here can be used to recover the (potentially variable)
division and death rates of any cell population for which division tracking information is available
Waratah Seed-1: Australia\u27s First Commercial Ride Share Satellite
In this paper, we report on a 6U CubeSat named Waratah Seed-1, designed by the ARC Training Centre for CubeSats, UAVs, and their Applications (CUAVA) and partners under the Waratah Seed project. Waratah Seed is a pilot Space Qualification Mission initiated under the NSW Government\u27s Space Industry Development Strategy with partial funding from Investment NSW. The goal of the mission is to allow NSW and Australian space industry groups to test their technology in space by flying on a 6U ride-share CubeSat. This project is the first of its kind in Australia, allowing space-tech start-ups and other groups to access a satellite spaceflight to test payloads at an inexpensive rate and in a more accessible way. The mission will help overcome one of the key barriers to gaining space flight heritage and should help accelerate the development of the Australian space ecosystem. The design of the WS-1 Satellite bus is based on its predecessor, the 3U CUAVA-1 CubeSat, and its sister 6U spacecraft CUAVA-2. The main payloads are a GPS reflectometry payload from UNSW and partners and a thermal management payload from UTS in collaboration with Mawson Rovers and Spiral Blue. Furthermore, there will be one edge computing payload from Spiral Blue, two solar cell test payloads, one each by Euroka Power and Extraterrestrial Power, a material test payload by Dandelions, a tactile, force, and torque sensor test payload by Sperospace and Contactile, an electropermanent magnetotorquer from DenebSpace and a space debris and plasma environment instrument from CUAVA and the University of Sydney. The satellite is scheduled for launch in July 2024 via SpaceX\u27s Transporter 11
- …