12,409 research outputs found
LARGE-EDDY SIMULATION OF TURBULENT PLANE COUETTE FLOW
The purpose of this study was to explore the central core region of a plane turbulent Cou-
ette flow by means of large-eddy simulations. First it was demonstrated how accurately a
low Reynolds number flow could be simulated. After having verified the reliability of the
LES approach. simulations were performed at a substantially higher Re. It was observed
that the mean velocity exhibited a practically linear variation in the core region. The
extent of the core increased with Re, whereas the slope of the mean velocity profile was
significantly reduced
Spin Torques in Point Contacts to Exchange-Biased Ferromagnetic Films
Hysteretic magneto-resistance of point contacts formed between non-magnetic
tips and single ferromagnetic films exchange-pinned by antiferromagnetic films
is investigated. The analysis of the measured current driven and field driven
hysteresis agrees with the recently proposed model of the surface spin-valve,
where the spin orientation at the interface can be different from that in the
bulk of the film. The switching in magneto-resistance at low fields is observed
to depend significantly on the direction of the exchange pinning, which allows
identifying this transition as a reversal of interior spins of the pinned
ferromagnetic films. The switching at higher fields is thus due to a spin
reversal in the point contact core, at the top surface of the ferromagnet, and
does not exhibit any clear field offset when the exchange-pinning direction or
the magnetic field direction is varied. This magnitude of the switching field
of the surface spins varies substantially from contact to contact and sometimes
from sweep to sweep, which suggests that the surface coercivity can change
under very high current densities and/or due to the particular microstructure
of the point contact. In contrast, no changes in the effect of the exchange
biasing on the interior spins are observed at high currents, possibly due to
the rapid drop in the current density away from nanometer sized point contact
cores.Comment: 3 pages, 3 figs, presented on 11th Joint MMM-Intermag Conference,
Jan. 18-22, 2010, Washington, US
Settling tracer spheroids in vertical turbulent channel flows
The motion of particles settling in turbulence is an intriguing problem, which is relevant to an in-depth understanding of planktons in marine flows or the design of photobioreactors. This work studies the motion, orientation and distribution of inertia-less spheroidal particles settling in vertical channel flows by direct numerical simulations. We show that, compared to spherical tracers, the settling velocity of spheroidal tracers is enhanced due to preferential orientation and local clustering (not due to particle inertia, in the present case). Prolate spheroids tend to align their symmetry axes in the direction of gravity while oblate ones align perpendicular to it. Both kinds of particles attain a larger slip velocity in the direction of gravity and, therefore, settle faster. We also show that particles sample preferentially regions of high fluid velocity in downward flow and regions of low fluid velocity in upward flow. Such preferential sampling, which also contributes to the enhancement of settling, is the result of clustering. Besides, tracer particles are observed to accumulate in the channel center in downward flow and near the wall in upward flow: We show that tracer transport in the wall-normal direction is controlled by the particle- to-fluid slip velocity and by clustering. The slip velocity dominates the transport initially, but tracers increasingly cluster in regions with opposite flow direction as they accumulate either in the channel center or near the wall. Clustering appears to be associate with the coherent structures that characterize wall turbulence, and tracer distribution in the wall-normal direction is found to reach a steady state when the two qualitatively different mechanisms balance each other
The time to extinction for an SIS-household-epidemic model
We analyse a stochastic SIS epidemic amongst a finite population partitioned
into households. Since the population is finite, the epidemic will eventually
go extinct, i.e., have no more infectives in the population. We study the
effects of population size and within household transmission upon the time to
extinction. This is done through two approximations. The first approximation is
suitable for all levels of within household transmission and is based upon an
Ornstein-Uhlenbeck process approximation for the diseases fluctuations about an
endemic level relying on a large population. The second approximation is
suitable for high levels of within household transmission and approximates the
number of infectious households by a simple homogeneously mixing SIS model with
the households replaced by individuals. The analysis, supported by a simulation
study, shows that the mean time to extinction is minimized by moderate levels
of within household transmission
Canonical form of master equations and characterization of non-Markovianity
Master equations govern the time evolution of a quantum system interacting
with an environment, and may be written in a variety of forms. Time-independent
or memoryless master equations, in particular, can be cast in the well-known
Lindblad form. Any time-local master equation, Markovian or non-Markovian, may
in fact also be written in a Lindblad-like form. A diagonalisation procedure
results in a unique, and in this sense canonical, representation of the
equation, which may be used to fully characterize the non-Markovianity of the
time evolution. Recently, several different measures of non-Markovianity have
been presented which reflect, to varying degrees, the appearance of negative
decoherence rates in the Lindblad-like form of the master equation. We
therefore propose using the negative decoherence rates themselves, as they
appear in the canonical form of the master equation, to completely characterize
non-Markovianity. The advantages of this are especially apparent when more than
one decoherence channel is present. We show that a measure proposed by Rivas et
al. is a surprisingly simple function of the canonical decoherence rates, and
give an example of a master equation that is non-Markovian for all times t>0,
but to which nearly all proposed measures are blind. We also give necessary and
sufficient conditions for trace distance and volume measures to witness
non-Markovianity, in terms of the Bloch damping matrix.Comment: v2: Significant update, with many new results and one new author. 12
pages; v3: Minor clarifications, to appear in PRA; v4: matches published
versio
Histochemical and enzymatic differences in skeletal muscle from Svalbard reindeer during the summer and winter
Enzyme activities and fibre properties in four muscles from Svalbard reindeer, collected during the summer, have been compared with corresponding muscles during the winter. In two muscles, gluteobiceps and semimembranosus, oxidative capacity is higher in winter than in summer; in the other two muscles, semitendinosus and longissimus dorsi, there is no difference with time of the year. The capacity to oxidize fatty acids is low in winter compared with summer, especially in semitendinosus and longissimus. These changes are similar in both sexes. Histochemical studies of the three main fibre types, I (BetaR), HA (°cR) and IIB (aW), from the four muscles show that in male reindeers the muscle fibres are narrower at the end of the winter season than during the summer. The decrease of muscle tissue amounts to about one third of the total volume (33%), of which I accounts for 5%, IIA for 2% and IIB for 26%. The results indicate that the Svalbard reindeer use lean tissue in general, and IIB fibres in particular, in order to survive the hostile arctic winter period at Svalbard.Histokemiska och enzymatiska skillnader i skelettmuskel från Svalbardren mellan sommar och vinter.Abstract in Swedish / Sammandrag: Enzymaktiviteter och fiberegenskaper i fyra av Svalbardrenens muskler, insamlade under sommaren, har jåmforts med motsvarande muskler insamlade under vintern. I två muskler, gluteobiceps och semimembranosus, år oxidativa kapaciteten hogre under vintern an under sommaren; i de andra två musklerna, semitendinosus och longissimus dorsi, foreligger ingen skillnad i detta avseende. Kapaciteten att oxidera fettsyror år låg under vintern jåmfort med sommaren, speciellt i semitendinosus och longissimus. Inga konsskillnader foreligger i dessa avseenden. Histokemiska studier av de tre huvudtyperna av muskelfibrer, fiR (I), ocR (IIA) och (IIB), från de fyra musklerna visar att hos handjuren år fibrerna tunnare vid slutet av vintersåsongen jåmfort med sommaren. Denna minskning i muskelvåvnad uppgår till en tredjedel av totala volymen (33%). Harav svarar ftR for 5%, ^R tor 2% och for 26%. Resultaten antyder att Svalbardrenen anvånder muskelvåvnad, speciellt QcW fibrer, for att overleva undri den hårda arktiska vinterperioden på Svalbard
Residue currents associated with weakly holomorphic functions
We construct Coleff-Herrera products and Bochner-Martinelli type residue
currents associated with a tuple of weakly holomorphic functions, and show
that these currents satisfy basic properties from the (strongly) holomorphic
case, as the transformation law, the Poincar\'e-Lelong formula and the
equivalence of the Coleff-Herrera product and the Bochner-Martinelli type
residue current associated with when defines a complete intersection.Comment: 28 pages. Updated with some corrections from the revision process. In
particular, corrected and clarified some things in Section 5 and 6 regarding
products of weakly holomorphic functions and currents, and the definition of
the Bochner-Martinelli type current
Fundamental properties and applications of quasi-local black hole horizons
The traditional description of black holes in terms of event horizons is
inadequate for many physical applications, especially when studying black holes
in non-stationary spacetimes. In these cases, it is often more useful to use
the quasi-local notions of trapped and marginally trapped surfaces, which lead
naturally to the framework of trapping, isolated, and dynamical horizons. This
framework allows us to analyze diverse facets of black holes in a unified
manner and to significantly generalize several results in black hole physics.
It also leads to a number of applications in mathematical general relativity,
numerical relativity, astrophysics, and quantum gravity. In this review, I will
discuss the basic ideas and recent developments in this framework, and
summarize some of its applications with an emphasis on numerical relativity.Comment: 14 pages, 2 figures. Based on a talk presented at the 18th
International Conference on General Relativity and Gravitation, 8-13 July
2007, Sydney, Australi
Experimentally realizable quantum comparison of coherent states and its applications
When comparing quantum states to each other, it is possible to obtain an
unambiguous answer, indicating that the states are definitely different,
already after a single measurement. In this paper we investigate comparison of
coherent states, which is the simplest example of quantum state comparison for
continuous variables. The method we present has a high success probability, and
is experimentally feasible to realize as the only required components are beam
splitters and photon detectors. An easily realizable method for quantum state
comparison could be important for real applications. As examples of such
applications we present a "lock and key" scheme and a simple scheme for quantum
public key distribution.Comment: 14 pages, 5 figures, version one submitted to PRA. Version two is the
final accepted versio
- …