1,296 research outputs found

    Phase Behavior of Polyelectrolyte-Surfactant Complexes at Planar Surfaces

    Full text link
    We investigate theoretically the phase diagram of an insoluble charged surfactant monolayer in contact with a semi-dilute polyelectrolyte solution (of opposite charge). The polyelectrolytes are assumed to have long-range and attractive (electrostatic) interaction with the surfactant molecules. In addition, we introduce a short-range (chemical) interaction which is either attractive or repulsive. The surfactant monolayer can have a lateral phase separation between dilute and condensed phases. Three different regimes of the coupled system are investigated depending on system parameters. A regime where the polyelectrolyte is depleted due to short range repulsion from the surface, and two adsorption regimes, one being dominated by electrostatics, whereas the other by short range chemical attraction (similar to neutral polymers). When the polyelectrolyte is more attracted (or at least less repelled) by the surfactant molecules as compared with the bare water/air interface, it will shift upwards the surfactant critical temperature. For repulsive short-range interactions the effect is opposite. Finally, the addition of salt to the solution is found to increase the critical temperature for attractive surfaces, but does not show any significant effect for repulsive surfaces.Comment: 23 pages, 10 figure

    Adhesion-Induced Lateral Phase Separation in Membranes

    Full text link
    Adhesion between membranes is studied using a phenomenological model, where the inter-membrane distance is coupled to the concentration of sticker molecules on the membranes. The model applies to both for adhesion of two flexible membranes and to adhesion of one flexible membrane onto a second membrane supported on a solid substrate. We mainly consider the case where the sticker molecules form bridges and adhere directly to both membranes. The calculated mean-field phase diagrams show an upward shift of the transition temperature indicating that the lateral phase separation in the membrane is enhanced due to the coupling effect. Hence the possibility of adhesion-induced lateral phase separation is predicted. For a particular choice of the parameters, the model exhibits a tricritical behavior. We also discuss the non-monotonous shape of the inter-membrane distance occurring when the lateral phase separation takes place. The inter-membrane distance relaxes to the bulk values with two symmetric overshoots. Adhesion mediated by other types of stickers is also considered.Comment: 13 pages, 9 PostScript figures included. To be published in Euro. Phys. J - E. Minor revision

    Kinetics of Surfactant Adsorption at Fluid-Fluid Interfaces

    Full text link
    We present a theory for the kinetics of surfactant adsorption at the interface between an aqueous solution and another fluid (air, oil) phase. The model relies on a free-energy formulation. It describes both the diffusive transport of surfactant molecules from the bulk solution to the interface, and the kinetics taking place at the interface itself. When applied to non-ionic surfactant systems, the theory recovers results of previous models, justify their assumptions and predicts a diffusion-limited adsorption, in accord with experiments. For salt-free ionic surfactant solutions, electrostatic interactions are shown to drastically affect the kinetics. The adsorption in this case is predicted to be kinetically limited, and the theory accounts for unusual experimental results obtained recently for the dynamic surface tension of such systems. Addition of salt to an ionic surfactant solution leads to screening of the electrostatic interactions and to a diffusion-limited adsorption. In addition, the free-energy formulation offers a general method for relating the dynamic surface tension to surface coverage without relying on equilibrium relations.Comment: 36 pages, latex, 10 figure

    Diblock Copolymer Ordering Induced by Patterned Surfaces Above the Order-Disorder Transition

    Full text link
    We investigate the morphology of diblock copolymers in the vicinity of flat, chemically patterned surfaces. Using a Ginzburg-Landau free energy, spatial variations of the order parameter are given in terms of a general two-dimensional surface pattern above the order-disorder transition. The propagation of several surface patterns into the bulk is investigated. The oscillation period and decay length of the surface qq-modes are calculated in terms of system parameters. We observe lateral order parallel to the surface as a result of order perpendicular to the surface. Surfaces which has a finite size chemical pattern (e.g., a stripe of finite width) induces lamellar ordering extending into the bulk. Close to the surface pattern the lamellae are strongly perturbed adjusting to the pattern.Comment: 9 pages, 14 figures, to be published in Macromolecule

    Self-Assembly in Mixtures of Polymers and Small Associating Molecules

    Full text link
    The interaction between a flexible polymer in good solvent and smaller associating solute molecules such as amphiphiles (surfactants) is considered theoretically. Attractive correlations, induced in the polymer because of the interaction, compete with intra-chain repulsion and eventually drive a joint self-assembly of the two species, accompanied by partial collapse of the chain. Results of the analysis are found to be in good agreement with experiments on the onset of self-assembly in diverse polymer-surfactant systems. The threshold concentration for self-assembly in the mixed system (critical aggregation concentration, cac) is always lower than the one in the polymer-free solution (critical micelle concentration, cmc). Several self-assembly regimes are distinguished, depending on the effective interaction between the two species. For strong interaction, corresponding experimentally to oppositely charged species, the cac is much lower than the cmc. It increases with ionic strength and depends only weakly on polymer charge. For weak interaction, the cac is lower but comparable to the cmc, and the two are roughly proportional over a wide range of cmc values. Association of small molecules with amphiphilic polymers exhibiting intra-chain aggregation (polysoaps) is gradual, having no sharp onset.Comment: 21 pages, 5 figures, RevTex, the published version, see also cond-mat/990305

    Diblock copolymer thin films: Parallel and perpendicular lamellar phases in the weak segregation limit

    Full text link
    We study morphologies of thin-film diblock copolymers between two flat and parallel walls. The study is restricted to the weak segregation regime below the order-disorder transition temperature. The deviation from perfect lamellar shape is calculated for phases which are perpendicular and parallel to the walls. We examine the undulations of the inter material dividing surface and its angle with the walls, and find that the deviation from its unperturbed position can be much larger than in the strong segregation case. Evaluating the weak segregation stability of the lamellar phases, it is shown that a surface interaction, which is quadratic in the monomer concentration, favors the perpendicular lamellar phase. In particular, the degeneracy between perpendicular and unfrustrated parallel lamellar phases for walls without a preferential adsorption is removed.Comment: 10 pages, 9 figures, submitted to European Physical Journal
    • …
    corecore