1,347 research outputs found

    A detailed analysis of structure growth in f(R)f(R) theories of gravity

    Full text link
    We investigate the connection between dark energy and fourth order gravity by analyzing the behavior of scalar perturbations around a Friedmann-Robertson-Walker background. The evolution equations for scalar perturbation are derived using the covariant and gauge invariant approach and applied to two widely studied f(R)f(R) gravity models. The structure of the general fourth order perturbation equations and the analysis of scalar perturbations lead to the discovery of a characteristic signature of fourth order gravity in the matter power spectrum, the details of which have not seen before in other works in this area. This could provide a crucial test for fourth order gravity on cosmological scales.Comment: 27 pages and 35 figure

    Symbolic Implementation of Connectors in BIP

    Full text link
    BIP is a component framework for constructing systems by superposing three layers of modeling: Behavior, Interaction, and Priority. Behavior is represented by labeled transition systems communicating through ports. Interactions are sets of ports. A synchronization between components is possible through the interactions specified by a set of connectors. When several interactions are possible, priorities allow to restrict the non-determinism by choosing an interaction, which is maximal according to some given strict partial order. The BIP component framework has been implemented in a language and a tool-set. The execution of a BIP program is driven by a dedicated engine, which has access to the set of connectors and priority model of the program. A key performance issue is the computation of the set of possible interactions of the BIP program from a given state. Currently, the choice of the interaction to be executed involves a costly exploration of enumerative representations for connectors. This leads to a considerable overhead in execution times. In this paper, we propose a symbolic implementation of the execution model of BIP, which drastically reduces this overhead. The symbolic implementation is based on computing boolean representation for components, connectors, and priorities with an existing BDD package

    Cosmo-dynamics and dark energy with a quadratic EoS: anisotropic models, large-scale perturbations and cosmological singularities

    Full text link
    In general relativity, for fluids with a linear equation of state (EoS) or scalar fields, the high isotropy of the universe requires special initial conditions, and singularities are anisotropic in general. In the brane world scenario anisotropy at the singularity is suppressed by an effective quadratic equation of state. There is no reason why the effective EoS of matter should be linear at the highest energies, and a non-linear EoS may describe dark energy or unified dark matter (Paper I, astro-ph/0512224). In view of this, here we study the effects of a quadratic EoS in homogenous and inhomogeneous cosmological models in general relativity, in order to understand if in this context the quadratic EoS can isotropize the universe at early times. With respect to Paper I, here we use the simplified EoS P=alpha rho + rho^2/rho_c, which still allows for an effective cosmological constant and phantom behavior, and is general enough to analyze the dynamics at high energies. We first study anisotropic Bianchi I and V models, focusing on singularities. Using dynamical systems methods, we find the fixed points of the system and study their stability. We find that models with standard non-phantom behavior are in general asymptotic in the past to an isotropic fixed point IS, i.e. in these models even an arbitrarily large anisotropy is suppressed in the past: the singularity is matter dominated. Using covariant and gauge invariant variables, we then study linear perturbations about the homogenous and isotropic spatially flat models with a quadratic EoS. We find that, in the large scale limit, all perturbations decay asymptotically in the past, indicating that the isotropic fixed point IS is the general asymptotic past attractor for non phantom inhomogeneous models with a quadratic EoS. (Abridged)Comment: 16 pages, 6 figure
    • …
    corecore