60 research outputs found

    Relating Web pages to enable information-gathering tasks

    Full text link
    We argue that relationships between Web pages are functions of the user's intent. We identify a class of Web tasks - information-gathering - that can be facilitated by a search engine that provides links to pages which are related to the page the user is currently viewing. We define three kinds of intentional relationships that correspond to whether the user is a) seeking sources of information, b) reading pages which provide information, or c) surfing through pages as part of an extended information-gathering process. We show that these three relationships can be productively mined using a combination of textual and link information and provide three scoring mechanisms that correspond to them: {\em SeekRel}, {\em FactRel} and {\em SurfRel}. These scoring mechanisms incorporate both textual and link information. We build a set of capacitated subnetworks - each corresponding to a particular keyword - that mirror the interconnection structure of the World Wide Web. The scores are computed by computing flows on these subnetworks. The capacities of the links are derived from the {\em hub} and {\em authority} values of the nodes they connect, following the work of Kleinberg (1998) on assigning authority to pages in hyperlinked environments. We evaluated our scoring mechanism by running experiments on four data sets taken from the Web. We present user evaluations of the relevance of the top results returned by our scoring mechanisms and compare those to the top results returned by Google's Similar Pages feature, and the {\em Companion} algorithm proposed by Dean and Henzinger (1999).Comment: In Proceedings of ACM Hypertext 200

    GRAPHGINI: Fostering Individual and Group Fairness in Graph Neural Networks

    Full text link
    We address the growing apprehension that GNNs, in the absence of fairness constraints, might produce biased decisions that disproportionately affect underprivileged groups or individuals. Departing from previous work, we introduce for the first time a method for incorporating the Gini coefficient as a measure of fairness to be used within the GNN framework. Our proposal, GRAPHGINI, works with the two different goals of individual and group fairness in a single system, while maintaining high prediction accuracy. GRAPHGINI enforces individual fairness through learnable attention scores that help in aggregating more information through similar nodes. A heuristic-based maximum Nash social welfare constraint ensures the maximum possible group fairness. Both the individual fairness constraint and the group fairness constraint are stated in terms of a differentiable approximation of the Gini coefficient. This approximation is a contribution that is likely to be of interest even beyond the scope of the problem studied in this paper. Unlike other state-of-the-art, GRAPHGINI automatically balances all three optimization objectives (utility, individual, and group fairness) of the GNN and is free from any manual tuning of weight parameters. Extensive experimentation on real-world datasets showcases the efficacy of GRAPHGINI in making significant improvements in individual fairness compared to all currently available state-of-the-art methods while maintaining utility and group equality
    • …
    corecore