2,476 research outputs found

    Probabilistic learning for selective dissemination of information

    Get PDF
    New methods and new systems are needed to filter or to selectively distribute the increasing volume of electronic information being produced nowadays. An effective information filtering system is one that provides the exact information that fulfills user's interests with the minimum effort by the user to describe it. Such a system will have to be adaptive to the user changing interest. In this paper we describe and evaluate a learning model for information filtering which is an adaptation of the generalized probabilistic model of information retrieval. The model is based on the concept of 'uncertainty sampling', a technique that allows for relevance feedback both on relevant and nonrelevant documents. The proposed learning model is the core of a prototype information filtering system called ProFile

    A fireworks model for Gamma-Ray Bursts

    Full text link
    The energetics of the long duration GRB phenomenon is compared with models of a rotating Black Hole (BH) in a strong magnetic field generated by an accreting torus. A rough estimate of the energy extracted from a rotating BH with the Blandford-Znajek mechanism is obtained with a very simple assumption: an inelastic collision between the rotating BH and the torus. The GRB energy emission is attributed to an high magnetic field that breaks down the vacuum around the BH and gives origin to a e+- fireball. Its subsequent evolution is hypothesized, in analogy with the in-flight decay of an elementary particle, to evolve in two distinct phases. The first one occurs close to the engine and is responsible of energizing and collimating the shells. The second one consists of a radiation dominated expansion, which correspondingly accelerates the relativistic photon--particle fluid and ends at the transparency time. This mechanism simply predicts that the observed Lorentz factor is determined by the product of the Lorentz factor of the shell close to the engine and the Lorentz factor derived by the expansion. An anisotropy in the fireball propagation is thus naturally produced, whose degree depends on the bulk Lorentz factor at the end of the collimation phase.Comment: Accepted for publication in MNRA

    Intermittency and structure functions in channel flow turbulence

    Get PDF
    We present a study of intermittency in a turbulent channel flow. Scaling exponents of longitudinal streamwise structure functions, ζp/ζ3\zeta_p /\zeta_3, are used as quantitative indicators of intermittency. We find that, near the center of the channel the values of ζp/ζ3\zeta_p /\zeta_3 up to p=7p=7 are consistent with the assumption of homogeneous/isotropic turbulence. Moving towards the boundaries, we observe a growth of intermittency which appears to be related to an intensified presence of ordered vortical structures. In fact, the behaviour along the normal-to-wall direction of suitably normalized scaling exponents shows a remarkable correlation with the local strength of the Reynolds stress and with the \rms value of helicity density fluctuations. We argue that the clear transition in the nature of intermittency appearing in the region close to the wall, is related to a new length scale which becomes the relevant one for scaling in high shear flows.Comment: 4 pages, 6 eps figure

    The GRB Variability/Peak Luminosity Correlation: new results

    Get PDF
    We report test results of the correlation between time variability and peak luminosity of Gamma-Ray Bursts (GRBs), using a larger sample (32) of GRBs with known redshift than that available to Reichart et al. (2001), and using as variability measure that introduced by these authors. The results are puzzling. Assuming an isotropic-equivalent peak luminosity, as done by Reichart et al. (2001), a correlation is still found, but it is less relevant, and inconsistent with a power law as previously reported. Assuming as peak luminosity that corrected for GRB beaming for a subset of 16 GRBs with known beaming angle, the correlation becomes little less significant.Comment: 11 pages, 10 figures, MNRAS, accepte

    Planckian Energy Scattering and Surface Terms in the Gravitational Action

    Full text link
    This is a revised version of our previous paper by the same name and preprint number. It contains various changes, two figures and new results in sect.5. We propose a new approach to four-dimensional Planckian-energy scattering in which the phase of the S{\cal S}-matrix is written---to leading order in \hbar and to all orders in R/b=Gs/JR/b =Gs/J---in terms of the surface term of the gravity action and of a boundary term for the colliding quanta. The proposal is checked at the leading order in R/bR/b and also against some known examples of scattering in strong gravitational fields.Comment: preprint CERN-TH.6904/93/rev (Latex file, 46 pages, 2 figures not included

    UV-Completion by Classicalization

    Full text link
    We suggest a novel approach to UV-completion of a class of non-renormalizable theories, according to which the high-energy scattering amplitudes get unitarized by production of extended classical objects (classicalons), playing a role analogous to black holes, in the case of non-gravitational theories. The key property of classicalization is the existence of a classicalizer field that couples to energy-momentum sources. Such localized sources are excited in high-energy scattering processes and lead to the formation of classicalons. Two kinds of natural classicalizers are Nambu-Goldstone bosons (or, equivalently, longitudinal polarizations of massive gauge fields) and scalars coupled to energy-momentum type sources. Classicalization has interesting phenomenological applications for the UV-completion of the Standard Model both with or without the Higgs. In the Higgless Standard Model the high-energy scattering amplitudes of longitudinal WW-bosons self-unitarize via classicalization, without the help of any new weakly-coupled physics. Alternatively, in the presence of a Higgs boson, classicalization could explain the stabilization of the hierarchy. In both scenarios the high-energy scatterings are dominated by the formation of classicalons, which subsequently decay into many particle states. The experimental signatures at the LHC are quite distinctive, with sharp differences in the two cases.Comment: 37 page

    Intermittency and scaling laws for wall bounded turbulence

    Get PDF
    Well defined scaling laws clearly appear in wall bounded turbulence, even very close to the wall, where a distinct violation of the refined Kolmogorov similarity hypothesis (RKSH) occurs together with the simultaneous persistence of scaling laws. A new form of RKSH for the wall region is here proposed in terms of the structure functions of order two which, in physical terms, confirms the prevailing role of the momentum transfer towards the wall in the near wall dynamics.Comment: 10 pages, 5 figure
    corecore