20 research outputs found

    Inference on a New Lifetime Distribution under Progressive Type II Censoring for a Parallel-Series Structure

    No full text
    A new lifetime distribution, called exponential doubly Poisson distribution, is proposed with decreasing, increasing, and upside-down bathtub-shaped hazard rates. One of the reasons for introducing the new distribution is that it can describe the failure time of a system connected in the form of a parallel-series structure. Some properties of the proposed distribution are addressed. Four methods of estimation for the involved parameters are considered based on progressively type II censored data. These methods are maximum likelihood, moments, least squares, and weighted least squares estimations. Through an extensive numerical simulation, the performance of the estimation methods is compared based on the average of mean squared errors and the average of absolute relative biases of the estimates. Two real datasets are used to compare the proposed distribution with some other well-known distributions. The comparison indicates that the proposed distribution is better than the other distributions to match the data provided

    A New Initialization Approach in Particle Swarm Optimization for Global Optimization Problems

    No full text
    Particle swarm optimization (PSO) algorithm is a population-based intelligent stochastic search technique used to search for food with the intrinsic manner of bee swarming. PSO is widely used to solve the diverse problems of optimization. Initialization of population is a critical factor in the PSO algorithm, which considerably influences the diversity and convergence during the process of PSO. Quasirandom sequences are useful for initializing the population to improve the diversity and convergence, rather than applying the random distribution for initialization. The performance of PSO is expanded in this paper to make it appropriate for the optimization problem by introducing a new initialization technique named WELL with the help of low-discrepancy sequence. To solve the optimization problems in large-dimensional search spaces, the proposed solution is termed as WE-PSO. The suggested solution has been verified on fifteen well-known unimodal and multimodal benchmark test problems extensively used in the literature, Moreover, the performance of WE-PSO is compared with the standard PSO and two other initialization approaches Sobol-based PSO (SO-PSO) and Halton-based PSO (H-PSO). The findings indicate that WE-PSO is better than the standard multimodal problem-solving techniques. The results validate the efficacy and effectiveness of our approach. In comparison, the proposed approach is used for artificial neural network (ANN) learning and contrasted to the standard backpropagation algorithm, standard PSO, H-PSO, and SO-PSO, respectively. The results of our technique has a higher accuracy score and outperforms traditional methods. Also, the outcome of our work presents an insight on how the proposed initialization technique has a high effect on the quality of cost function, integration, and diversity aspects

    Human Gait Analysis and Prediction Using the Levenberg-Marquardt Method

    No full text
    A high-accuracy gait data prediction model can be used to design prosthesis and orthosis for people having amputations or ailments of the lower limb. The objective of this study is to observe the gait data of different subjects and design a neural network to predict future gait angles for fixed speeds. The data were recorded via a Biometrics goniometer, while the subjects were walking on a treadmill for 20 seconds each at 2.4 kmph, 3.6 kmph, and 5.4 kmph. The data were then imported into Matlab, filtered to remove movement artifacts, and then used to design a neural network with 60% data for training, 20% for validation, and remaining 20% for testing using the LevenbergMarquardt method. The mean-squared error for all the cases was in the order of 10−3 or lower confirming that our method is correct. For further comparison, we randomly tested the neural network function with untrained data and compared the expected output with actual output of the neural network function using Pearson’s correlation coefficient and correlation plots. We conclude that our framework can be successfully used to design prosthesis and orthosis for lower limb. It can also be used to validate gait data and compare it to expected data in rehabilitation engineering

    Wireless Sensor Network Applications in Healthcare and Precision Agriculture

    No full text
    A wireless sensor network is a large sensor hub with a confined power supply that performs limited calculations. Due to the degree of restricted correspondence and the large size of the sensor hub, packets sent through the sensor network are based primarily on multihop data transmission. Current wireless sensor networks are widely used in a range of applications, such as precision agriculture, healthcare, and smart cities. The network covers a wide domain and addresses multiple aspects in agriculture, such as soil moisture, temperature, and humidity. Therefore, issues of precision agriculture at the output of the network are analyzed using a star and mesh topology with TCP as the transmission protocol. The system is equipped with two sensors: Arduino DFRobot for soil moisture and DHT11 for relative temperature and humidity. The experiments are performed using the NS2 simulator, which provides an improved interface to analyze the results. The results showed that the proposed mechanism has good performance and output

    A Fuzzy-Genetic-Based Integration of Renewable Energy Sources and E-Vehicles

    No full text
    E-Vehicles are used for transportation and, with a vehicle-to-grid optimization approach, they may be used for supplying a backup source of energy for renewable energy sources. Renewable energy sources are integrated to maintain the demand of consumers, mitigate the active and reactive power losses, and maintain the voltage profile. Renewable energy sources are not supplied all day and, to meet the peak demand, extra electricity may be supplied through e-Vehicles. E-Vehicles with random integration may cause system unbalancing problems and need a solution. The objective of this paper is to integrate e-Vehicles with the grid as a backup source of energy through the grid-to-vehicle optimization approach by reducing active and reactive power losses and maintaining voltage profile. In this paper, three case studies are discussed: (i) integration of renewable energy sources alone; (ii) integration of e-Vehicles alone; (iii) integration of renewable energy sources and e-Vehicles in hybrid mode. The simulation results show the effectiveness of the integration and the active and reactive power losses are minimum when we used the third case

    A Fuzzy-Genetic-Based Integration of Renewable Energy Sources and E-Vehicles

    No full text
    E-Vehicles are used for transportation and, with a vehicle-to-grid optimization approach, they may be used for supplying a backup source of energy for renewable energy sources. Renewable energy sources are integrated to maintain the demand of consumers, mitigate the active and reactive power losses, and maintain the voltage profile. Renewable energy sources are not supplied all day and, to meet the peak demand, extra electricity may be supplied through e-Vehicles. E-Vehicles with random integration may cause system unbalancing problems and need a solution. The objective of this paper is to integrate e-Vehicles with the grid as a backup source of energy through the grid-to-vehicle optimization approach by reducing active and reactive power losses and maintaining voltage profile. In this paper, three case studies are discussed: (i) integration of renewable energy sources alone; (ii) integration of e-Vehicles alone; (iii) integration of renewable energy sources and e-Vehicles in hybrid mode. The simulation results show the effectiveness of the integration and the active and reactive power losses are minimum when we used the third case

    Analyzing the Impact of Cyber Security Related Attributes for Intrusion Detection Systems

    No full text
    Machine learning (ML) is one of the dominating technologies practiced in both the industrial and academic domains throughout the world. ML algorithms can examine the threats and respond to intrusions and security incidents swiftly in an instinctive way. It plays a critical function in providing a proactive security mechanism in the cybersecurity domain. Cybersecurity ensures the real time protection of information, information systems, and networks from intruders. Several security and privacy reports have cited that there has been a rapid increase in both the frequency and the number of cybersecurity breaches in the last decade. Information security has been compromised by intruders at an alarming rate. Anomaly detection, phishing page identification, software vulnerability diagnosis, malware identification, and denial of services attacks are the main cyber-security issues that demand effective solutions. Researchers and experts have been practicing different approaches to address the current cybersecurity issues and challenges. However, in this research endeavor, our objective is to make an idealness assessment of machine learning-based intrusion detection systems (IDS) under the hesitant fuzzy (HF) conditions, using a multi-criteria decision making (MCDM)-based analytical hierarchy process (AHP) and technique for order of preference by similarity to ideal-solutions (TOPSIS). Hesitant fuzzy sets are useful for addressing decision-making situations in which experts must overcome the reluctance to make a conclusion. The proposed research project would assist the machine learning practitioners and cybersecurity specialists in identifying, selecting, and prioritizing cybersecurity-related attributes for intrusion detection systems, and build more ideal and effective intrusion detection systems

    A Novel text2IMG Mechanism of Credit Card Fraud Detection: A Deep Learning Approach

    No full text
    Online sales and purchases are increasing daily, and they generally involve credit card transactions. This not only provides convenience to the end-user but also increases the frequency of online credit card fraud. In the recent years, in some countries, this fraud increase has led to an exponential increase in credit card fraud detection, which has become increasingly important to address this security issue. Recent studies have proposed machine learning (ML)-based solutions for detecting fraudulent credit card transactions, but their detection scores still need improvement due to the imbalance of classes in any given dataset. Few approaches have achieved exceptional results on different datasets. In this study, the Kaggle dataset was used to develop a deep learning (DL)-based approach to solve the text data problem. A novel text2IMG conversion technique is proposed that generates small images. The images are fed into a CNN architecture with class weights using the inverse frequency method to resolve the class imbalance issue. DL and ML approaches were applied to verify the robustness and validity of the proposed system. An accuracy of 99.87% was achieved by Coarse-KNN using deep features of the proposed CNN

    A Novel text2IMG Mechanism of Credit Card Fraud Detection: A Deep Learning Approach

    No full text
    Online sales and purchases are increasing daily, and they generally involve credit card transactions. This not only provides convenience to the end-user but also increases the frequency of online credit card fraud. In the recent years, in some countries, this fraud increase has led to an exponential increase in credit card fraud detection, which has become increasingly important to address this security issue. Recent studies have proposed machine learning (ML)-based solutions for detecting fraudulent credit card transactions, but their detection scores still need improvement due to the imbalance of classes in any given dataset. Few approaches have achieved exceptional results on different datasets. In this study, the Kaggle dataset was used to develop a deep learning (DL)-based approach to solve the text data problem. A novel text2IMG conversion technique is proposed that generates small images. The images are fed into a CNN architecture with class weights using the inverse frequency method to resolve the class imbalance issue. DL and ML approaches were applied to verify the robustness and validity of the proposed system. An accuracy of 99.87% was achieved by Coarse-KNN using deep features of the proposed CNN
    corecore