3 research outputs found

    A burst and congestion-aware routing metric for RPL protocol in IoT network

    Get PDF
    The packet loss and power consumption are the main issues considered once congestion occurs in any network, such as the Internet of Things (IoT) with a huge number of sensors and applications. Since IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) is not initially designed for high stream traffic load, this restricts the application domain of RPL in several IoT scenarios such as burst traffic scenarios. The performance of RPL suffers in a network with burst traffic load, which leads to reducing the lifetime of the network and causing traffic congestion among the neighbour nodes. Therefore, to address this issue, we proposed a Burst and Congestion-Aware Metric for RPL called BCA-RPL, which calculates the rank, considering the number of packets. Also, the proposed mechanism includes congestion avoiding and load balancing techniques by switching the best parent selection to avoid the congested area. Our scheme is built and compared to the original RPL routing protocol for low power and lossy network with OF0 (OF0-RPL). Simulation results based on Cooja simulator shows BCA-RPL performs better than the original RPL-OF0 routing protocol in terms of packet loss, power consumption and packet delivery ratio (PDR) under burst traffic load. The BCA-RPL significantly improves the network where it decreases the packet loss around 50% and power consumption to an acceptable level with an improvement on the PDR of the IoT network

    The RPL load balancing in IoT network with burst traffic scenarios

    Get PDF
    In Low Power and Lossy Networks (LLNs) sensor nodes are deployed in various traffic load conditions such as, regular and heavy traffic load. The adoption of Internet-of-Things enabled devices in the form of wearables and ubiquitous sensors and actuators has demanded LLNs to handle burst traffic load, which is an event required by myriad IoT devices in a shared LLN. In the large events, burst traffic load requires a new radical approach of load balancing, this scenario causes congestion increases and packet drops relatively when frequent traffic burst load rises in comparison with regular and heavy loads. In this paper, we introduced a new efficient load balance mechanism for traffic congestion in IPv6 Routing Protocol for Low Power and Lossy Network (RPL). To measure the communication quality and optimize the lifetime of the network, we have chosen packet delivery ratio (PDR) and power consumption (PC) as our metrics. We proposed a traffic-aware metric that utilizes ETX and parent count metrics (ETXPC), where communication quality for LLNs with RPL routing protocol are playing an important role in traffic engineering. In addition, we provided analytical results to quantify the impact of Minimum Rank with Hysteresis Objective on Function (MRHOF) and Objective Function zero (OF0) to the packet delivery, reliability and power consumption in LLNs. The simulation results pragmatically show that the proposed load balancing approach has increased packet delivery ratio with less power consumption

    The RPL Load Balancing in IoT Network with Burst Traffic Scenarios

    No full text
    In Low Power and Lossy Networks (LLNs) sensor nodes are deployed in various traffic load conditions such as, regular and heavy traffic load. The adoption of Internet-of-Things enabled devices in the form of wearables and ubiquitous sensors and actuators has demanded LLNs to handle burst traffic load, which is an event required by myriad IoT devices in a shared LLN. In the large events, burst traffic load requires a new radical approach of load balancing, this scenario causes congestion increases and packet drops relatively when frequent traffic burst load rises in comparison with regular and heavy loads. In this paper, we introduced a new efficient load balance mechanism for traffic congestion in IPv6 Routing Protocol for Low Power and Lossy Network (RPL). To measure the communication quality and optimize the lifetime of the network, we have chosen packet delivery ratio (PDR) and power consumption (PC) as our metrics. We proposed a traffic-aware metric that utilizes ETX and parent count metrics (ETXPC), where communication quality for LLNs with RPL routing protocol are playing an important role in traffic engineering. In addition, we provided analytical results to quantify the impact of Minimum Rank with Hysteresis Objective on Function (MRHOF) and Objective Function zero (OF0) to the packet delivery, reliability and power consumption in LLNs. The simulation results pragmatically show that the proposed load balancing approach has increased packet delivery ratio with less power consumption
    corecore