424 research outputs found
Search for CP violation in D+âÏÏ+ and D+sâK0SÏ+ decays
A search for CP violation in D + â ÏÏ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fbâ1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (â0.04 ± 0.14 ± 0.14)% for candidates with K â K + mass within 20 MeV/c 2 of the Ï meson mass. A search for a CP -violating asymmetry that varies across the Ï mass region of the D + â K â K + Ï + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+sâK0SÏ+ decay is measured to be (0.61 ± 0.83 ± 0.14)%
Study of decays to the final state and evidence for the decay
A study of decays is performed for the first time
using data corresponding to an integrated luminosity of 3.0
collected by the LHCb experiment in collisions at centre-of-mass energies
of and TeV. Evidence for the decay
is reported with a significance of 4.0 standard deviations, resulting in the
measurement of
to
be .
Here denotes a branching fraction while and
are the production cross-sections for and mesons.
An indication of weak annihilation is found for the region
, with a significance of
2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html,
link to supplemental material inserted in the reference
Cerebellar Asymmetry and Cortical Connectivity in Monozygotic Twins with Discordant Handedness
Handedness differentiates patterns of neural asymmetry and interhemispheric connectivity in cortical systems that underpin manual and language functions. Contemporary models of cerebellar function incorporate complex motor behaviour and higher-order cognition, expanding upon earlier, traditional associations between the cerebellum and motor control. Structural MRI defined cerebellar volume asymmetries and correlations with corpus callosum (CC) size were compared in 19 pairs of adult female monozygotic twins strongly discordant for handedness (MZHd). Volume and asymmetry of cerebellar lobules were obtained using automated parcellation.CC area and regional widths were obtained from midsagittal planimetric measurements. Within the cerebellum and CC, neurofunctional distinctions were drawn between motor and higher-order cognitive systems. Relationships amongst regional cerebellar asymmetry and cortical connectivity (as indicated by CC widths) were investigated. Interactions between hemisphere and handedness in the anterior cerebellum were due to a larger right-greater-than-left hemispheric asymmetry in right-handed (RH) compared to left-handed (LH) twins. In LH twins only, anterior cerebellar lobule volumes (IV, V) for motor control were associated with CC size, particularly in callosal regions associated with motor cortex connectivity. Superior posterior cerebellar lobule volumes (VI, Crus I, Crus II, VIIb) showed no correlation with CC size in either handedness group. These novel results reflected distinct patterns of cerebellar-cortical relationships delineated by specific CC regions and an anterior-posterior cerebellar topographical mapping. Hence, anterior cerebellar asymmetry may contribute to the greater degree of bilateral cortical organisation of frontal motor function in LH individuals
Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex
The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders
Measurement of W-pair production in collisions at 189 GeV
The production of W-pairs is analysed in a data samplecollected by ALEPH at a mean centre-of-mass energy of 188.6 GeV,corresponding to an integrated luminosity of 174.2 pb^-1. Crosssections are given for different topologies of W decays intoleptons or hadrons. Combining all final states and assumingStandard Model branching fractions, the total W-pair cross sectionis measured to be 15.71 +- 0.34 (stat) +- 0.18 (syst) pb.Using also the W-pair data samples collected by ALEPH at lowercentre-of-mass energies, the decay branching fraction of the W bosoninto hadrons is measured to be BR (W hadrons) = 66.97+- 0.65 (stat) +- 0.32 (syst) %, allowing a determination of theCKM matrix element |V(cs)|= 0.951 +- 0.030 (stat) +- 0.015 (syst)
Searches for neutral Higgs bosons in collisions at centre-of-mass energies from 192 to 202 GeV
Searches for neutral Higgs bosons are performed with the 237 pb^-1 of data collected in 1999 by the ALEPH detector at LEP, for centre-of-mass energies between 191.6 and 201.6 GeV. These searches apply to Higgs bosons within the context of the Standard Model and its minimal supersymmetric extension (MSSM) as well as to invisibly decaying Higgs bosons. No evidence of a signal is seen. A lower limit on the mass of the Standard Model Higgs boson of 107.7 GeV/c^2 at 95% confidence level is set. In the MSSM, lower limits of 91.2 and 91.6 GeV/c^2 are derived for the masses of the neutral Higgs bosons h and A, respectively. For a Higgs boson decaying invisibly and produced with the Standard Model cross section, masses below 106.4 GeV/c^2 are excluded
Measurement of the W mass by direct reconstruction in collisions at 172 GeV
The mass of the W boson is obtained from reconstructed invariant mass distributions in W-pair events. The sample of W pairs is selected from 10.65~pb collected with the ALEPH detector at a mean centre-of-mass energy of 172.09 \GEV. The invariant mass distribution of simulated events are fitted to the experimental distributions and the following W masses are obtained: , , . The statistical errors are the expected errors for Monte Carlo samples of the same integrated luminosity as the data. The combination of these measurements gives:
Updated measurements of exclusive J/Ï and Ï(2S) production cross-sections in pp collisions at âs = 7 TeV
The differential cross-section as a function of rapidity has been measured for the exclusive production of J/Ï and Ï(2S) mesons in protonâproton collisions at âs = 7 TeV, using data collected by the LHCb experiment, corresponding to an integrated luminosity of 930 pbâ1. The cross-sections times branching fractions to two muons having pseudorapidities between 2.0 and 4.5 are measured to be where the first uncertainty is statistical and the second is systematic. The measurements agree with next-to-leading order QCD predictions as well as with models that include saturation effects
Observation of Two New Excited Îb0 States Decaying to Îb0 K-Ï+
Two narrow resonant states are observed in the Îb0K-Ï+ mass spectrum using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb-1. The minimal quark content of the Îb0K-Ï+ system indicates that these are excited Îb0 baryons. The masses of the Îb(6327)0 and Îb(6333)0 states are m[Îb(6327)0]=6327.28-0.21+0.23±0.12±0.24 and m[Îb(6333)0]=6332.69-0.18+0.17±0.03±0.22 MeV, respectively, with a mass splitting of Îm=5.41-0.27+0.26±0.12 MeV, where the uncertainties are statistical, systematic, and due to the Îb0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of Î[Îb(6327)0]<2.20(2.56) and Î[Îb(6333)0]<1.60(1.92) MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of 1D Îb0 resonances
- âŠ