2 research outputs found

    Design of variation-tolerant synchronizers for multiple clock and voltage domains

    No full text
    PhD ThesisVascular plants comprise 20-30% lignin, constituting a considerable organic input to soils. Lignin is not necessarily preserved in soils, but the fate of its decomposition products in the wider environment is not well understood. Therefore, the overarching hypothesis tested herein was that a significant proportion of lignin is solubilised and lost from soils by transport in water. Solid phase extraction was used to extract lignin phenols from dissolved organic matter (DOM) from water outlets adjacent to major land use types (grazed grassland, deciduous woodland, and moorland) and compared to the lignin phenols from representative vegetation types, animal dungs and soils from each land use type. The phenols were identified and quantified using thermally assisted hydrolysis and methylation using tetramethylammonium hydroxide. Leachates from lysimeters treated with four vegetation types (grass, buttercup, ash, and oak) were sampled in a 22 month chronosequence, showing that some of the dominant phenols detected in the vegetation were also dominant in the respective DOM. A proportional relationship between increasing temperature and loss of representative lignin phenols in DOM was observed. Comparison of the dominant phenols in vegetation, soil and water sampled from field sites suggested specific lignin phenols could be used as biomarkers for different land uses. The concentrations of organic carbon-normalised total lignin phenols in the soils were similar to those in water, indicating that a considerable proportion of lignin in soils is lost via leaching. There was no significant difference in losses of lignin phenols between each land use type. Application of different rates of dissolved lignin to lysimeters indicated that the amount of water added was a dominant driver of transport through soil over 16 days, and that molecular structure also influenced transport rates of individual phenols. The impact of this research is that climate change (increased precipitation and warming) may significantly affect the loss of lignin by increased solubilisation and leaching from soils.NERC and BBSRC for funding this project and providing my stipen

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population
    corecore