4 research outputs found
Joint optimization of UAV-IRS placement and resource allocation for wireless powered mobile edge computing networks
The rapid evolution of communication systems towards the next generation has led to an increased deployment of Internet of Things (IoT) devices for various real-time applications. However, these devices often face limitations in terms of processing power and battery life, which can hinder overall system performance. Additionally, applications such as augmented reality and surveillance require intensive computations within tight timeframes. This research focuses on investigating a mobile edge computing (MEC) network empowered by unmanned aerial vehicle intelligent reflecting surfaces (UAV-IRS) to enhance the computational energy efficiency of the system through optimized resource allocation. The MEC infrastructure incorporates the energy transfer circuit (ETC) and edge server (ES), co-located with the intelligent access point (AP). To eliminate interference between energy transfer and data transmission, a time-division multiple access method is utilized. In the first phase, the ETC wirelessly transfers power to low-power IoT devices, which efficiently harvest and store the received energy in their batteries. In the second phase, IoT devices employ the stored energy for local computing or offloading tasks. Furthermore, the presence of tall buildings may obstruct communication routes, impacting system functionality. To address these challenges, we propose an optimization framework that simultaneously considers time, power, phase shift design, and local computational resources. This joint optimization problem is non-convex and non-linear, making it NP-hard. To tackle this complexity, we decompose the problem into subproblems and solve them iteratively using a convex optimization toolbox like CVX. Through simulations, we demonstrate that our proposed optimization framework significantly improves 40.7% system performance compared to alternative approaches
Joint optimization of UAV-IRS placement and resource allocation for wireless powered mobile edge computing networks
The rapid evolution of communication systems towards the next generation has led to an increased deployment of Internet of Things (IoT) devices for various real-time applications. However, these devices often face limitations in terms of processing power and battery life, which can hinder overall system performance. Additionally, applications such as augmented reality and surveillance require intensive computations within tight timeframes. This research focuses on investigating a mobile edge computing (MEC) network empowered by unmanned aerial vehicle intelligent reflecting surfaces (UAV-IRS) to enhance the computational energy efficiency of the system through optimized resource allocation. The MEC infrastructure incorporates the energy transfer circuit (ETC) and edge server (ES), co-located with the intelligent access point (AP). To eliminate interference between energy transfer and data transmission, a time-division multiple access method is utilized. In the first phase, the ETC wirelessly transfers power to low-power IoT devices, which efficiently harvest and store the received energy in their batteries. In the second phase, IoT devices employ the stored energy for local computing or offloading tasks. Furthermore, the presence of tall buildings may obstruct communication routes, impacting system functionality. To address these challenges, we propose an optimization framework that simultaneously considers time, power, phase shift design, and local computational resources. This joint optimization problem is non-convex and non-linear, making it NP-hard. To tackle this complexity, we decompose the problem into subproblems and solve them iteratively using a convex optimization toolbox like CVX. Through simulations, we demonstrate that our proposed optimization framework significantly improves 40.7% system performance compared to alternative approaches
SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study
Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling.
Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty.
Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year.
Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population