728 research outputs found
Efficiency of internal shocks in magnetized relativistic jets
We study the dynamic and radiative efficiency of conversion of
kinetic-to-thermal/magnetic energy by internal shocks in relativistic
magnetized outflows. A parameter study of a large number of collisions of
cylindrical shells is performed. We explore how, while keeping the total flow
luminosity constant, the variable fluid magnetization influences the efficiency
and find that the interaction of shells in a mildly magnetized jet yields
higher dynamic, but lower radiative efficiency than in a non-magnetized flow. A
multi-wavelength radiative signature of different shell magnetization is
computed assuming that relativistic particles are accelerated at internal
shocks.Comment: 4 pages, 2 figures, proceedings of the meeting "HEPRO III: High
Energy Phenomena in Relativistic Outflows" (Barcelona, June 2011), fixed the
bibliography error
Simulations of the Magneto-rotational Instability in Core-Collapse Supernovae
We assess the importance of the magneto-rotational instability in
core-collapse supernovae by an analysis of the growth rates of unstable modes
in typical post-collapse systems and by numerical simulations of simplified
models. The interplay of differential rotation and thermal stratification
defines different instability regimes which we confirm in our simulations. We
investigate the termination of the growth of the MRI by parasitic
instabilities, establish scaling laws characterising the termination amplitude,
and study the long-term evolution of the saturated turbulent state.Comment: 6 pages, 1 figure. To appear in Proceedings of 4th International
Conference on Numerical Modeling of Space Plasma Flows (Chamonix 2009
3did Update: domain–domain and peptide-mediated interactions of known 3D structure
The database of 3D interacting domains (3did) is a collection of protein interactions for which high-resolution 3D structures are known. 3did exploits structural information to provide the crucial molecular details necessary for understanding how protein interactions occur. Besides interactions between globular domains, the new release of 3did also contains a hand-curated set of transient peptide-mediated interactions. The interactions are grouped in Interaction Types, based on the mode of binding, and the different binding interfaces used in each type are also identified and catalogued. A web-based tool to query 3did is available at http://3did.irbbarcelona.org
A method for computing synchrotron and inverse-Compton emission from hydrodynamic simulations of supernova remnants
The observational signature of supernova remnants (SNRs) is very complex, in
terms of both their geometrical shape and their spectral properties, dominated
by non-thermal synchrotron and inverse-Compton scattering. We propose a
post-processing method to analyse the broad-band emission of SNRs based on
three-dimensional hydrodynamical simulations. From the hydrodynamical data, we
estimate the distribution of non-thermal electrons accelerated at the shock
wave and follow the subsequent evolution as they lose or gain energy by
adiabatic expansion or compression and emit energy by radiation. As a first
test case, we use a simulation of a bipolar supernova expanding into a cloudy
medium. We find that our method qualitatively reproduces the main observational
features of typical SNRs and produces fluxes that agree with observations to
within a factor of a few. allowing for further use in more extended sets of
models.Comment: 15 pages, 3 figures; accepted, HEDLA 2014 special issue of High
Energy Density Physic
Multiwavelength afterglow light curves from magnetized GRB flows
We use high-resolution relativistic MHD simulations coupled with a radiative
transfer code to compute multiwavelength afterglow light curves of magnetized
ejecta of gamma-ray bursts interacting with a uniform circumburst medium. The
aim of our study is to determine how the magnetization of the ejecta at large
distance from the central engine influences the afterglow emission, and to
assess whether observations can be reliably used to infer the strength of the
magnetic field. We find that, for typical parameters of the ejecta, the
emission from the reverse shock peaks for magnetization of the flow, and that it is greatly suppressed for higher . The
emission from the forward shock shows an achromatic break shortly after the end
of the burst marking the onset of the self-similar evolution of the blast wave.
Fitting the early afterglow of GRB 990123 and 090102 with our numerical models
we infer respective magnetizations of and for these bursts. We argue that the lack of observed reverse shock
emission from the majority of the bursts can be understood if \sigma_0
\simmore 0.1, since we obtain that the luminosity of the reverse shock
decreases significantly for . For ejecta with \sigma_0
\simmore 0.1 our models predict that there is sufficient energy left in the
magnetic field, at least during an interval of ~10 times the burst duration, to
produce a substantial emission if the magnetic energy can be dissipated (for
instance, due to resistive effects) and radiated away.Comment: 9 pages, 9 figures. Submitted to MNRAS
Internal shocks in relativistic outflows: collisions of magnetized shells
(Abridged): We study the collision of magnetized irregularities (shells) in
relativistic outflows in order to explain the origin of the generic
phenomenology observed in the non-thermal emission of both blazars and
gamma-ray bursts. We focus on the influence of the magnetic field on the
collision dynamics, and we further investigate how the properties of the
observed radiation depend on the strength of the initial magnetic field and on
the initial internal energy density of the flow. The collisions of magnetized
shells and the radiation resulting from these collisions are calculated using
the 1D relativistic magnetohydrodynamics code MRGENESIS. The interaction of the
shells with the external medium prior to their collision is also determined
using an exact solver for the corresponding 1D relativistic magnetohydrodynamic
Riemann problem. Our simulations show that two magnetization parameters - the
ratio of magnetic energy density and thermal energy density, \alpha_B, and the
ratio of magnetic energy density and mass-energy density, \sigma - play an
important role in the pre-collision phase, while the dynamics of the collision
and the properties of the light curves depend mostly on the magnetization
parameter \sigma. The interaction of the shells with the external medium
changes the flow properties at their edges prior to the collision. For
sufficiently dense shells moving at large Lorentz factors (\simgt 25) these
properties depend only on the magnetization parameter \sigma. Internal shocks
in GRBs may reach maximum efficiencies of conversion of kinetic into thermal
energy between 6% and 10%, while in case of blazars, the maximum efficiencies
are \sim 2%.Comment: 17 pages, 18 figures. 2 new references have been added. Accepted for
publication in Astronomy and Astrophysic
- …