728 research outputs found

    Efficiency of internal shocks in magnetized relativistic jets

    Full text link
    We study the dynamic and radiative efficiency of conversion of kinetic-to-thermal/magnetic energy by internal shocks in relativistic magnetized outflows. A parameter study of a large number of collisions of cylindrical shells is performed. We explore how, while keeping the total flow luminosity constant, the variable fluid magnetization influences the efficiency and find that the interaction of shells in a mildly magnetized jet yields higher dynamic, but lower radiative efficiency than in a non-magnetized flow. A multi-wavelength radiative signature of different shell magnetization is computed assuming that relativistic particles are accelerated at internal shocks.Comment: 4 pages, 2 figures, proceedings of the meeting "HEPRO III: High Energy Phenomena in Relativistic Outflows" (Barcelona, June 2011), fixed the bibliography error

    Simulations of the Magneto-rotational Instability in Core-Collapse Supernovae

    Full text link
    We assess the importance of the magneto-rotational instability in core-collapse supernovae by an analysis of the growth rates of unstable modes in typical post-collapse systems and by numerical simulations of simplified models. The interplay of differential rotation and thermal stratification defines different instability regimes which we confirm in our simulations. We investigate the termination of the growth of the MRI by parasitic instabilities, establish scaling laws characterising the termination amplitude, and study the long-term evolution of the saturated turbulent state.Comment: 6 pages, 1 figure. To appear in Proceedings of 4th International Conference on Numerical Modeling of Space Plasma Flows (Chamonix 2009

    3did Update: domain–domain and peptide-mediated interactions of known 3D structure

    Get PDF
    The database of 3D interacting domains (3did) is a collection of protein interactions for which high-resolution 3D structures are known. 3did exploits structural information to provide the crucial molecular details necessary for understanding how protein interactions occur. Besides interactions between globular domains, the new release of 3did also contains a hand-curated set of transient peptide-mediated interactions. The interactions are grouped in Interaction Types, based on the mode of binding, and the different binding interfaces used in each type are also identified and catalogued. A web-based tool to query 3did is available at http://3did.irbbarcelona.org

    A method for computing synchrotron and inverse-Compton emission from hydrodynamic simulations of supernova remnants

    Full text link
    The observational signature of supernova remnants (SNRs) is very complex, in terms of both their geometrical shape and their spectral properties, dominated by non-thermal synchrotron and inverse-Compton scattering. We propose a post-processing method to analyse the broad-band emission of SNRs based on three-dimensional hydrodynamical simulations. From the hydrodynamical data, we estimate the distribution of non-thermal electrons accelerated at the shock wave and follow the subsequent evolution as they lose or gain energy by adiabatic expansion or compression and emit energy by radiation. As a first test case, we use a simulation of a bipolar supernova expanding into a cloudy medium. We find that our method qualitatively reproduces the main observational features of typical SNRs and produces fluxes that agree with observations to within a factor of a few. allowing for further use in more extended sets of models.Comment: 15 pages, 3 figures; accepted, HEDLA 2014 special issue of High Energy Density Physic

    Multiwavelength afterglow light curves from magnetized GRB flows

    Full text link
    We use high-resolution relativistic MHD simulations coupled with a radiative transfer code to compute multiwavelength afterglow light curves of magnetized ejecta of gamma-ray bursts interacting with a uniform circumburst medium. The aim of our study is to determine how the magnetization of the ejecta at large distance from the central engine influences the afterglow emission, and to assess whether observations can be reliably used to infer the strength of the magnetic field. We find that, for typical parameters of the ejecta, the emission from the reverse shock peaks for magnetization σ00.010.1\sigma_0 \sim 0.01 - 0.1 of the flow, and that it is greatly suppressed for higher σ0\sigma_0. The emission from the forward shock shows an achromatic break shortly after the end of the burst marking the onset of the self-similar evolution of the blast wave. Fitting the early afterglow of GRB 990123 and 090102 with our numerical models we infer respective magnetizations of σ00.01\sigma_0 \sim 0.01 and σ00.1\sigma_0 \sim 0.1 for these bursts. We argue that the lack of observed reverse shock emission from the majority of the bursts can be understood if \sigma_0 \simmore 0.1, since we obtain that the luminosity of the reverse shock decreases significantly for σ01\sigma_0 \sim 1. For ejecta with \sigma_0 \simmore 0.1 our models predict that there is sufficient energy left in the magnetic field, at least during an interval of ~10 times the burst duration, to produce a substantial emission if the magnetic energy can be dissipated (for instance, due to resistive effects) and radiated away.Comment: 9 pages, 9 figures. Submitted to MNRAS

    Internal shocks in relativistic outflows: collisions of magnetized shells

    Get PDF
    (Abridged): We study the collision of magnetized irregularities (shells) in relativistic outflows in order to explain the origin of the generic phenomenology observed in the non-thermal emission of both blazars and gamma-ray bursts. We focus on the influence of the magnetic field on the collision dynamics, and we further investigate how the properties of the observed radiation depend on the strength of the initial magnetic field and on the initial internal energy density of the flow. The collisions of magnetized shells and the radiation resulting from these collisions are calculated using the 1D relativistic magnetohydrodynamics code MRGENESIS. The interaction of the shells with the external medium prior to their collision is also determined using an exact solver for the corresponding 1D relativistic magnetohydrodynamic Riemann problem. Our simulations show that two magnetization parameters - the ratio of magnetic energy density and thermal energy density, \alpha_B, and the ratio of magnetic energy density and mass-energy density, \sigma - play an important role in the pre-collision phase, while the dynamics of the collision and the properties of the light curves depend mostly on the magnetization parameter \sigma. The interaction of the shells with the external medium changes the flow properties at their edges prior to the collision. For sufficiently dense shells moving at large Lorentz factors (\simgt 25) these properties depend only on the magnetization parameter \sigma. Internal shocks in GRBs may reach maximum efficiencies of conversion of kinetic into thermal energy between 6% and 10%, while in case of blazars, the maximum efficiencies are \sim 2%.Comment: 17 pages, 18 figures. 2 new references have been added. Accepted for publication in Astronomy and Astrophysic
    corecore