34,348 research outputs found
SPICE modelling of photoluminescence and electroluminescence based current-voltage curves of solar cells for concentration applications
Quantitative photoluminescence (PL) or electroluminescence (EL) experiments can be used to probe fast and in a non-destructive way the current-voltage (IV) characteristics of individual subcells in a multi-junction device, information that is, otherwise, not available. PL-based IV has the advantage that it is contactless and can be performed even in partly finished devices, allowing for an early diagnosis of the expected performance of the solar cells in the production environment. In this work we simulate the PL- and EL-based IV curves of single junction solar cells to assess their validity compared with the true IV curve and identify injection regimes where artefacts might appear due to the limited in-plane carrier transport in the solar cell layers. We model the whole photovoltaic device as a network of sub-circuits, each of them describing the solar cell behaviour using the two diode model. The sub-circuits are connected to the neighbouring ones with a resistor, representing the in-plane transport in the cell. The resulting circuit, involving several thousand subcircuits, is solved using SPICE
Asymptotically anomalous black hole configurations in gravitating nonlinear electrodynamics
We analyze the class of non-linear electrodynamics minimally coupled to
gravitation supporting asymptotically flat \textit{non Schwarzschild-like}
elementary solutions. The Lagrangian densities governing the dynamics of these
models in flat space are defined and fully characterized as a subclass of the
set of functions of the two standard field invariants, restricted by
requirements of regularity, parity invariance and positivity of the energy,
which are necessary conditions for the theories to be physically admissible.
Such requirements allow for a complete characterization and classification of
the geometrical structures of the elementary solutions for the corresponding
gravity-coupled models. In particular, an immediate consequence of the
requirement of positivity of the energy is the asymptotic flatness of
gravitating elementary solutions for any admissible model. The present
analysis, together with the (already published) one concerning the full class
of admissible gravitating non-linear electrodynamics supporting asymptotically
flat \textit{Schwarzschild-like} elementary solutions, completes and exhausts
the study of the gravitating point-like charge problem for this kind of models.Comment: 12 pages, 6 figures, revtex4, added extra paragraph in conclusions,
added some references, added other minor changes, to published in Phys.Rev.
Recommended from our members
Cost Efficient Distributed Load Frequency Control in Power Systems
The introduction of new technologies and increased penetration of renewable resources is altering the power distribution landscape which now includes a larger numbers of micro-generators. The centralized strategies currently employed for performing frequency control in a cost efficient way need to be revisited and decentralized to conform with the increase of distributed generation in the grid. In this paper, the use of Multi-Agent and Multi-Objective Reinforcement Learning techniques to train models to perform cost efficient frequency control through decentralized decision making is proposed. More specifically, we cast the frequency control problem as a Markov Decision Process and propose the use of reward composition and action composition multi-objective techniques and compare the results between the two. Reward composition is achieved by increasing the dimensionality of the reward function, while action composition is achieved through linear combination of actions produced by multiple single objective models. The proposed framework is validated through comparing the observed dynamics with the acceptable limits enforced in the industry and the cost optimal setups
Recommended from our members
Load Frequency Control: A Deep Multi-Agent Reinforcement Learning Approach
The paradigm shift in energy generation towards microgrid-based architectures is changing the landscape of the energy control structure heavily in distribution systems. More specifically, distributed generation is deployed in the network demanding decentralised control mechanisms to ensure reliable power system operations. In this work, a Multi-Agent Reinforcement Learning approach is proposed to deliver an agentbased solution to implement load frequency control without the need of a centralised authority. Multi-Agent Deep Deterministic Policy Gradient is used to approximate the frequency control at the primary and the secondary levels. Each generation unit is represented as an agent that is modelled by a Recurrent Neural Network. Agents learn the optimal way of acting and interacting with the environment to maximise their long term performance and to balance generation and load, thus restoring frequency. In this paper we prove using three test systems, with two, four and eight generators, that our Multi-Agent Reinforcement Learning approach can efficiently be used to perform frequency control in a decentralised way
Cooler and bigger than thought? Planetary host stellar parameters from the InfraRed Flux Method
Effective temperatures and radii for 92 planet-hosting stars as determined
from the InfraRed Flux Method (IRFM) are presented and compared with those
given by other authors using different approaches. The IRFM temperatures we
have derived are systematically lower than those determined from the
spectroscopic condition of excitation equilibrium, the mean difference being as
large as 110 K. They are, however, consistent with previous IRFM studies and
with the colors derived from Kurucz and MARCS model atmospheres. Comparison
with direct measurements of stellar diameters for 7 dwarf stars, which
approximately cover the range of temperatures of the planet-hosting stars,
suggest that the IRFM radii and temperatures are reliable in an absolute scale.
A better understanding of the fundamental properties of the stars with planets
will be achieved once this discrepancy between the IRFM and the spectroscopic
temperature scales is resolved.Comment: 15 pages, 4 figures. Accepted for publication in Ap
Parallel imports, innovations and national welfare: The role of the sizes of the income classes and national markets for health care.
This paper shows that regardless of any intra-country income differences, parallel imports result in a lower level of health-care innovation but, contrary to popular as well as conventional theoretical wisdom, a lower price in the Third World compared to market-based discrimination. Despite such a lower price, however, parallel imports unambiguously make all buyers in the Third World worse off when intra-country income disparity exists. On the other hand, even discarding the MNC's profit, there will be cases in which the richer country prefers price discrimination as well. That is, in those cases, no countries will have any incentive under the welfare criterion to undo price discrimination, contrary to Richardso
On the galactic chemical evolution of sulfur
Sulfur abundances have been determined for ten stars to resolve a debate in
the literature on the Galactic chemical evolution of sulfur in the halo phase
of the Milky Way. Our analysis is based on observations of the S I lines at
9212.9, 9228.1, and 9237.5 A for stars for which the S abundance was obtained
previously from much weaker S I lines at 8694.0 and 8694.6 A. In contrast to
the previous results showing [S/Fe] to rise steadily with decreasing [Fe/H],
our results show that [S/Fe] is approximately constant for metal-poor stars
([Fe/H] < -1) at [S/Fe] = +0.3. Thus, sulfur behaves in a similar way to the
other alpha elements, with an approximately constant [S/Fe] for metallicities
lower than [Fe/H] = -1. We suggest that the reason for the earlier claims of a
rise of [S/Fe] is partly due to the use of the weak S I 8694.0 and 8694.6 A
lines and partly uncertainties in the determination of the metallicity when
using Fe I lines. The S I 9212.9, 9228.1, and 9237.5 A lines are preferred for
an abundance analysis of sulfur for metal-poor stars.Comment: Accepted by A&A, 12 pages. Full article with figures in A&
- …