396 research outputs found

    What Can I Do Around Here? Deep Functional Scene Understanding for Cognitive Robots

    Full text link
    For robots that have the capability to interact with the physical environment through their end effectors, understanding the surrounding scenes is not merely a task of image classification or object recognition. To perform actual tasks, it is critical for the robot to have a functional understanding of the visual scene. Here, we address the problem of localizing and recognition of functional areas from an arbitrary indoor scene, formulated as a two-stage deep learning based detection pipeline. A new scene functionality testing-bed, which is complied from two publicly available indoor scene datasets, is used for evaluation. Our method is evaluated quantitatively on the new dataset, demonstrating the ability to perform efficient recognition of functional areas from arbitrary indoor scenes. We also demonstrate that our detection model can be generalized onto novel indoor scenes by cross validating it with the images from two different datasets

    Learning the Semantics of Manipulation Action

    Full text link
    In this paper we present a formal computational framework for modeling manipulation actions. The introduced formalism leads to semantics of manipulation action and has applications to both observing and understanding human manipulation actions as well as executing them with a robotic mechanism (e.g. a humanoid robot). It is based on a Combinatory Categorial Grammar. The goal of the introduced framework is to: (1) represent manipulation actions with both syntax and semantic parts, where the semantic part employs λ\lambda-calculus; (2) enable a probabilistic semantic parsing schema to learn the λ\lambda-calculus representation of manipulation action from an annotated action corpus of videos; (3) use (1) and (2) to develop a system that visually observes manipulation actions and understands their meaning while it can reason beyond observations using propositional logic and axiom schemata. The experiments conducted on a public available large manipulation action dataset validate the theoretical framework and our implementation
    • …
    corecore