838 research outputs found

    Search for Intrinsic Excitations in 152Sm

    Full text link
    The 685 keV excitation energy of the first excited 0+ state in 152Sm makes it an attractive candidate to explore expected two-phonon excitations at low energy. Multiple-step Coulomb excitation and inelastic neutron scattering studies of 152Sm are used to probe the E2 collectivity of excited 0+ states in this "soft" nucleus and the results are compared with model predictions. No candidates for two-phonon K=0+ quadrupole vibrational states are found. A 2+, K=2 state with strong E2 decay to the first excited K=0+ band and a probable 3+ band member are established.Comment: 4 pages, 6 figures, accepted for publication as a Rapid Communication in Physical Review

    Inelastic Neutron Scattering Studies of \u3csup\u3e76\u3c/sup\u3eGe and \u3csup\u3e76\u3c/sup\u3eSe: Relevance to Elevance to Neutrinoless Double-β Decay

    Get PDF
    Inelastic neutron scattering measurements were performed at the University of Kentucky Accelerator Laboratory on enriched 76Ge and 76Se scattering samples. From measurements at incident neutron energies from 2.0 to 4.0 MeV, many new levels were identified and characterized in each nucleus; level lifetimes, transition probabilities, multipole mixing ratios, and other properties were determined. In addition, γ-ray cross sections for the 76Ge(n,n′γ) reaction were measured at neutron energies up to 5.0 MeV, with the goal of determining the cross sections of γ rays in 2040-keV region, which corresponds to the region of interest in the neutrinoless double β decay of 76Ge. Gamma rays from the three strongest branches from the 3952-keV level were observed, but the previously reported 2041-keV γ ray was not. Population cross sections across the range of incident neutron energies were determined for the 3952-keV level, resulting in a cross section of ~0.1 mb for the 2041-keV branch using the previously determined branching ratios. Beyond this, the data from these experiments indicate that previously unreported γ rays from levels in 76Ge can be found in the 2039-keV region

    Inelastic Neutron Scattering Cross Sections for \u3csup\u3e76\u3c/sup\u3eGe Relevant to Background in Neutrinoless Double-\u3cem\u3eβ\u3c/em\u3e Decay Experiments

    Get PDF
    The experimental signature in searches for the neutrinoless double-β decay of 76Ge is a peak near 2039 keV in the spectrum. Given the low probability of the process, it is important that the background in this region be well understood. Inelastic scattering reactions with neutrons from muon-induced interactions and (α,n) reactions in the surrounding materials or in the detector can provide contributions to the background. We have measured the production cross sections for γ rays from the 76Ge(n,n\u27γ ) reaction in the 2039-keV region at incident neutron energies up to 4.9 MeV. In addition to determining that the cross sections of a previously known 2040.7-keV γ ray from the 3952-keV level in 76Ge are rather small, we find that a larger contribution arises from a 2037.5-keV γ ray which is attributed to a newly identified level at 3147 keV in 76Ge. A third contribution is also possible from another new level at 3577 keV. These results indicate that the 2039-keV region in 76Ge neutrinoless double-β decay searches is more complex than was previously thought

    Emerging nuclear collectivity in 124−130^{124-130}Te

    Full text link
    The emergence of nuclear collectivity near doubly-magic 132^{132}Sn was explored along the stable, even-even 124−130^{124-130}Te isotopes. Preliminary measurements of the B(E2;41+→21+)B(E2;4^{+}_{1}\rightarrow2^{+}_{1}) transition strengths are reported from Coulomb excitation experiments primarily aimed at measuring the gg factors of the 41+4^{+}_{1} states. Isotopically enriched Te targets were excited by 198-205 MeV 58^{58}Ni beams. A comparison of transition strengths obtained is made to large-scale shell-model calculations with successes and limitations discussed.Comment: 5 pages, 3 figures, Submitted to Proceedings HIAS 2019, EPJ Web of Conference

    Far From \u27Easy\u27 Spectroscopy with the 8Ï€ and GRIFFIN Spectrometers at TRIUMF-ISAC

    Get PDF
    The 8π spectrometer, installed at the TRIUMF-ISAC facility, was the world\u27s most sensitive γ-ray spectrometer dedicated to β-decay studies. A description is given of the 8π spectrometer and its auxiliary detectors including the plastic scintillator array SCEPTAR used for β-particle tagging and the Si(Li) array PACES for conversion electron measurements, its moving tape collector, and its data acquisition system. The recent investigation of the decay of 124Cs to study the nuclear structure of 124Xe, and how the β-decay measurements complemented previous Coulomb excitation studies, is highlighted, including the extraction of the deformation parameters for the excited 0+ bands in 124Xe. As a by-product, the decay scheme of the (7+) 124Cs isomeric state, for which the data from the PACES detectors were vital, was studied. Finally, a description of the new GRIFFIN spectrometer, which uses the same auxiliary detectors as the 8π spectrometer, is given
    • …
    corecore