478 research outputs found
Speeding up finite step-size updating of full QCD on the lattice
We propose various improvements of finite step-size updating for full QCD on
the lattice that might turn finite step-size updating into a viable alternative
to the hybrid Monte Carlo algorithm. These improvements are noise reduction of
the noisy estimator of the fermion determinant, unbiased inclusion of the
hopping parameter expansion and a multi-level Metropolis scheme. First
numerical tests are performed for the 2 dimensional Schwinger model with two
flavours of Wilson fermions and for QCD two flavours of Wilson fermions and
Schr"odinger functional boundary conditions.Comment: 22 pages, 1 figur
Spin susceptibility of the superfluid He-B in aerogel
The temperature dependence of paramagnetic susceptibility of the superfluid
^{3}He-B in aerogel is found. Calculations have been performed for an arbitrary
phase shift of s-wave scattering in the framework of BCS weak coupling theory
and the simplest model of aerogel as an aggregate of homogeneously distributed
ordinary impurities. Both limiting cases of the Born and unitary scattering can
be easily obtained from the general result. The existence of gapless
superfluidity starting at the critical impurity concentration depending on the
value of the scattering phase has been demonstrated. While larger than in the
bulk liquid the calculated susceptibility of the B-phase in aerogel proves to
be conspicuously smaller than that determined experimentally in the high
pressure region.Comment: 10 pages, 4 figures, REVTe
Universal Behaviour of the Superfluid Fraction and Tc of He-3 in 99.5% Open Aerogel
We have investigated the superfluid transition of He-3 in a 99.5% porosity
silica aerogel. This very dilute sample shows behaviour intermediary between
bulk He-3 and He-3 confined to the denser aerogels previously studied. We
present data on both the superfluid transition temperature and the superfluid
density and compare our results with previous measurements. Finally, we show
that the suppression of the superfluid transition temperature and suppression
of the superfluid density of He-3 in aerogel follow a universal relation for a
range of aerogel samples.Comment: 4 pages, 5 figures; 1 new figure, minor change
Cooling and the SU(2) Instanton Vaccuum
We present results of an investigation into the nature of instantons in
4-dimensional pure gauge lattice \ obtained from configurations which
have been cooled using an under-relaxed cooling algorithm. We discuss ways of
calibrating the cooling and the effects of different degrees of cooling, and
compare our data for the shapes, sizes and locations of instantons with
continuum results. In this paper we extend the ideas and techniques developed
by us for use in , and compare the results with those obtained by other
groups.Comment: 22 pages, LaTeX, uuencoded compressed tarfile of figures sent
separately. Full (compressed) postscript version (118k)available from
ftp://rock.helsinki.fi/pub/preprints/tft/Year1995/HU-TFT-95-21/paper.ps.
Influence of the U(1)_A Anomaly on the QCD Phase Transition
The SU(3)_{r} \times SU(3)_{\ell} linear sigma model is used to study the
chiral symmetry restoring phase transition of QCD at nonzero temperature. The
line of second order phase transitions separating the first order and smooth
crossover regions is located in the plane of the strange and nonstrange quark
masses. It is found that if the U(1)_{A} symmetry is explicitly broken by the
U(1)_{A} anomaly then there is a smooth crossover to the chirally symmetric
phase for physical values of the quark masses. If the U(1)_{A} anomaly is
absent, then there is a phase transition provided that the \sigma meson mass is
at least 600 MeV. In both cases, the region of first order phase transitions in
the quark mass plane is enlarged as the mass of the \sigma meson is increased.Comment: 5 pages, 3 figures, Revtex, discussion extended and references added.
To appear in PR
Instantons and Chiral Symmetry on the Lattice
I address the question of how much of QCD in the chiral limit is reproduced
by instantons. After reconstructing the instanton content of smoothed Monte
Carlo lattice configurations, I compare hadron spectroscopy on this instanton
ensemble to the spectroscopy on the original ``physical'' smoothed
configurations using a chirally optimised clover fermion action. By studying
the zero mode zone in simple instances I find that the optimised action gives a
satisfactory description of it. Through the Banks-Casher formula, instantons by
themselves are shown to break chiral symmetry but hadron correlators on the
instanton backgrounds are strongly influenced by free quark propagation. This
results in unnaturally light hadrons and a small splitting between the vector
and the pseudoscalar meson channels. Superimposing a perturbative ensemble of
zero momentum gauge field fluctuations (torons) on the instantons is found to
be enough to eliminate the free quarks and restore the physical hadron
correlators. I argue that the torons that are present only in finite volumes,
are probably needed to compensate the unnaturally large finite size effects due
to the lack of confinement in the instanton ensemble.Comment: 32 pages, LaTeX with 14 eps figure
Model of Inhomogeneous Impurity Distribution in Fermi Superfluids
The standard treatment of impurities in metals assumes a homogeneous
distribution of impurities. In this paper we study distributions that are
inhomogeneous. We discuss in detail the "isotropic inhomogeneous scattering
model" which takes into account the spatially varying scattering on the scale
of the superfluid coherence length. On a large scale the model reduces to a
homogeneous medium with renormalized parameter values. We apply the model to
superfluid 3He, where porous aerogel acts as the impurity. We calculate the
transition temperature Tc, the order parameter, and the superfluid density.
Both A- and B-like phases are considered. Two different types of behavior are
identified for the temperature dependence of the order parameter. We compare
the calculations with experiments on 3He in aerogel. We find that most of the
differences between experiments and the homogeneous theory can be explained by
the inhomogeneous model. All our calculations are based on the quasiclassical
theory of Fermi liquids. The parameters of this theory for superfluid 3He in
aerogel are discussed.Comment: 14 pages, 9 figures, minor change
Effects of non-perturbatively improved dynamical fermions in QCD at fixed lattice spacing
We present results for the static inter-quark potential, lightest glueballs,
light hadron spectrum and topological susceptibility using a non-perturbatively
improved action on a lattice at a set of values of the bare
gauge coupling and bare dynamical quark mass chosen to keep the lattice size
fixed in physical units ( fm). By comparing these measurements with a
matched quenched ensemble, we study the effects due to two degenerate flavours
of dynamical quarks. With the greater control over residual lattice spacing
effects which these methods afford, we find some evidence of charge screening
and some minor effects on the light hadron spectrum over the range of quark
masses studied (). More substantial differences between
quenched and unquenched simulations are observed in measurements of topological
quantities.Comment: 53 pages, LaTeX/RevTeX, 16 eps figures; corrected clover action
expression and various typos, no results change
- …