31 research outputs found
A Mechanistic model for predicting the nutrient requirements and feed biological values for sheep
The Cornell Net Carbohydrate and Protein System (CNCPS), a mechanistic model that predicts nutrient requirements and biological values of feeds for cattle, was modified for use with sheep. Published equations were added for predicting the energy and protein requirements of sheep, with a special emphasis on dairy sheep, whose specific needs are not considered by most sheep-feeding systems. The CNCPS for cattle equations that are used to predict the supply of nutrients from each feed were modified to include new solid and liquid ruminal passage rates for sheep, and revised equations were inserted to predict metabolic fecal N. Equations were added to predict fluxes in body energy and protein reserves from BW and condition score. When evaluated with data from seven published studies (19 treatments), for which the CNCPS for sheep predicted positive ruminal N balance, the CNCPS for sheep predicted OM digestibility, which is used to predict feed ME values, with no mean bias (1.1 g/100 g of OM; P > 0.10) and a low root mean squared prediction error (RMSPE; 3.6 g/100 g of OM). Crude protein digestibility, which is used to predict N excretion, was evaluated with eight published studies (23 treatments). The model predicted CP digestibility with no mean bias (-1.9 g/100 g of CP; P > 0.10) but with a large RMSPE (7.2 g/100 g of CP). Evaluation with a data set of published studies in which the CNCPS for sheep predicted negative ruminal N balance indicated that the model tended to underpredict OM digestibility (mean bias of -3.3 g/100 g of OM, P > 0.10; RMSPE = 6.5 g/100 g of OM; n = 12) and to overpredict CP digestibility (mean bias of 2.7 g/100 g of CP, P > 0.10; RMSPE = 12.8 g/100 g of CP; n = 7). The ability of the CNCPS for sheep to predict gains and losses in shrunk BW was evaluated using data from six studies with adult sheep (13 treatments with lactating ewes and 16 with dry ewes). It accurately predicted variations in shrunk BW when diets had positive N balance (mean bias of 5.8 g/d; P > 0.10; RMSPE of 30.0 g/d; n = 15), whereas it markedly overpredicted the variations in shrunk BW when ruminal balance was negative (mean bias of 53.4 g/d, P < 0.05; RMSPE = 84.1 g/d; n = 14). These evaluations indicated that the Cornell Net Carbohydrate and Protein System for Sheep can be used to predict energy and protein requirements, feed biological values, and BW gains and losses in adult sheep
Desenvolvimento e avaliação de uma biblioteca de alimentos tropicais para o modelo "Sistema de Carboidrato e Proteína Líquidos" da Universidade de Cornell
The Cornell Net Carbohydrate and Protein System (CNCPS) model has been increasingly used in tropical regions for dairy and beef production. However, the lack of appropriate characterization of the feeds has restricted its application. The objective of this study was to develop and evaluate a feed library containing feeds commonly used in tropical regions with characteristics needed as inputs for the CNCPS. Feed composition data collected from laboratory databases and from experiments published in scientific journals were used to develop this tropical feed library. The total digestible nutrients (TDN) predicted at 1x intake of maintenance requirement with the CNCPS model agreed with those predicted by the Weiss et al. (1992) equation (r² of 92.7%, MSE of 13, and bias of 0.8%) over all feeds. However, the regression r² of the tabular TDN values and the TDN predicted by the CNCPS model or with the Weiss equation were much lower (58.1 and 67.5%, respectively). A thorough comparison between observed and predicted TDN was not possible because of insufficient data to characterize the feeds as required by our models. When we used the mean chemical composition values from the literature data, the TDN predicted by our models did not agree with the measured values. We conclude using the TDN values calculated using the Weiss equation and the CNCPS model that are based on the actual chemical composition of the feeds result in energy values that more accurately represent the feeds being used in specific production situations than do the tabular values. Few papers published in Latin America journals that were used in this study reported information need by models such as the CNCPS.O uso do Sistema de Carboidrato e Proteina Líquidos da Universidade de Cornell (CNCPS) tanto para produção de leite como carne tem aumentado durante o últimos anos nas regiões tropicais. Entretanto, a falta de uma caracterização adequada de alimentos tem restringido o seu uso corretamente. Esse trabalho teve como objetivo principal o desenvolvimento e a avaliação de uma tabela de composição de alimentos utilizados nas condições tropicais. Os dados da composição desses alimentos foram baseados nas informações necessárias para o uso do modelo CNCPS desenvolvido pela Universidade de Cornell, USA. A composição desses alimentos foi obtida através de análises realizadas em laboratórios e de experimentos publicados em revistas científicas. Os nutrientes digestíveis totais (NDT) estimados através da composição de carboidratos e proteina dos alimentos pela equação de Weiss et al. (1992) e pelo modelo CNCPS foram comparados com os valores da tabela. O NDT estimado ao nível de mantença (1x) com o modelo CNCPS obteve valores próximos aos estimados pela equação de Weiss et al. (1992) (r² = 92.7% e bias = 0.8%). Entretanto, o r² da regressão entre os valores de NDT da tabela e o estimado pelo CNCPS e por Weiss foram menores (58.1 e 67.5%, respectivamente). Uma comparação completa entre os valores observados e preditos não foi possível devido a falta de caracterização dos alimentos conforme necessário pelos modelos testados. Quando os valores médios de literatura foram utilizados, a correlação entre o NDT estimado e o observado foi muito baixa. Concluímos que os valores de NDT estimados por Weiss e modelo CNCPS fornecem melhores estimativas de NDT do que os valores de tabela. A maioria dos trabalhos publicados que foram avaliados nesse estudo raramente incluíam informações necessárias para modelos como o CNCPS
In vitro ruminal degradation of neutral detergent fiber insoluble protein from tropical pastures fertilized with nitrogen
The objective was to determine in vitro the NDF insoluble protein (NDIP) extension and degradation rate of four tropical grasses by the potential effect of N fertilization. The grasses (Andropogon gayanus, Brachiaria brizantha, Cynodon plectostachyus and Megathyrsus maximus) that grow in Mexico were used. Each grass was grown in four plots (5×5 m), fertilized (relationship equivalent to 0 and 100 kg N/ha) and clipped 35 d after the N fertilization. A complete randomized block design with factorial arrangement 4×2, and two replicates per treatment was used, where the factors were grass species and N fertilization. Non-protein nitrogen (NPN), buffer insoluble protein (IP), NDIP and acid detergent insoluble protein (ADIP) were performed. Freeze-dried samples were incubated at 0, 1.5, 3, 6, 9, 12, 24, 48 and 96 h. After fermentation, the CP content of the NDF residues was determined. An exponential equation was used to determine the rate of the NDIP disappearance. There was no detectable interaction between type of grass and fertilization level. The NDIP (as %CP) averaged 35 % with a range of 10 to 60 %. The NDIP variation was primarily due to species. The extent and rates of degradation of the NDIP were 70.6 % and 7.1 %/h respectively, with no N-fertilization effect. The NDIP was degraded faster (P≤0.05) than NDF (7.7 vs 5.0 %/h). These data show that the NDIP is ruminally degraded and that this fraction significantly contributes to the rumen nitrogen supply
Use of animal and dietary information to predict rumen turnover
A database was developed from 16 scientific publications to explore mechanisms controlling rumen turnover. The database included 70 treatment means (43 cattle and 27 sheep) from experiments in which rumen contents were measured by complete manual evacuation or by slaughter. Rumen turnover was estimated as the ratio between rumen contents (kg of DM) and feed intake (kg of DM/h). Predictors were intake, body weight (BW), metabolic BW (BW0.75), and the dietary components crude protein (CP), neutral detergent fiber (NDF), neutral detergent solubles (NDS), acid detergent lignin and ash. The best linear models obtained to predict rumen turnover (T) for NDF, NDS, dry matter (DM) and acid detergent lignin (LIGN), respectively, were:
TNDF = 23.84 - 10.26 ln(D-NDFI);
r2 : 0.28, P < 0,001
TNDS = 17.08 - 13.39 ln(D-NDSI);
r2 : 0.76, P < 0,001
TDM = 20.16 - 10.14 ln(D-NDSI);
r2 : 0.65, P < 0,001
TLIGN = 37.69 - 30.77 ln(D-NDFI);
r2 : 0.70, P < 0,001
These curvilinear relationships were likely due, at least for NDF and lignin, to the increase in rumen NDF content (% of BW) that occurred when intake of dietary, or forage, NDF (% of BW) increased. In the database, turnover of NDF and NDS showed additive behavior. No differences were found between cattle and sheep in rumen NDF, NDS and DM turnovers. When fed at the same level of intake of forage NDF (% of BW), sheep had significantly lower rumen NDF contents (% of BW) than cattle. The rumen evacuation technique is a valuable tool to explore interspecies relationships. The use of this large dataset derived from the scientific literature improved the understanding of the relationships existing among feed intake, body size and the components of rumen turnover, and allowed their quantification
Condensed Tannins in the Diets of Primates: A Matter of Methods?
To understand the ways in which condensed tannins (CT) affect primate diet selection and nutritional status, correct measurements are essential. In the majority of studies of the CT contents of primate foods, a tannin source such as ''quebracho'' is used to standardize CT assays, but the CT in quebracho tannin may not be similar to those in the plants of interest. We investigated how the choice of standard to calibrate CT assays affects the estimation of CT in the diets of mountain gorillas (Gorilla beringei). We purified the CT from gorilla foods and compared the actual amounts of CT in the foods with estimates produced by using the quebracho tannin. When quebracho was used, the estimates of CT contents of gorilla foods were, on average, 3.6 times the actual content of CT so that the amounts in frequently eaten gorilla foods were substantially overestimated. The overestimation for a given plant could not be predicted reliably and the ranking of plants by tannin content differed according to the standard used. Our results demonstrate that accurate measurements of CT necessitate the use of tannins purified from the plant species of interest. A reevaluation of primatology studies using interspecific comparisons of tannin content will provide new insights into primate food selection and nutritional ecology. Am
Revisiting the UNICEF malnutrition framework to foster agriculture and health sector collaboration to reduce malnutrition: A comparison of stakeholder priorities for action in Afghanistan
High rates of undernutrition persist in Afghanistan, but community-level information is scarce on its underlying causes. Developing policy in such situations is affected by varying stakeholder perspectives on the issues. This study uses the UNICEF malnutrition framework and a rapid assessment methodology to compare how stakeholders at community, provincial and national levels describe the food and nutrition situation. Consistent differences in problem definition by administrative level and between agriculture and health sectors were apparent. Stakeholders at all administrative levels widely agreed on the need to improve incomes and employment to ensure food security because of the many constraints to agricultural production. Provincial and national level stakeholders further agreed on the need for nutrition education at all levels of society. The research illustrates how local adaptation and application of the UNICEF malnutrition framework can reveal divergent perspectives, as a first step toward finding common ground and an appropriate policy response.Policy Problem definition Afghanistan Nutrition Food security Food system Agriculture
In vitro ruminal degradation of carbohydrate fractions in tropical grasses fertilized with nitrogen
The goal was to determine the digestion rates of carbohydrate fractions A (sugars, oligosaccharides and organic acids), B1 (starch and soluble fiber), NSC (non-structural carbohydrates) and B2 (available NDF) in four tropical grasses using the gas production technique. Samples of whole forage (WF), residue insoluble in 90% ethanol (EIR) and isolated NDF (iNDF) were fermented in vitro and gas production measured. Gas volumes were determined from the following fractions, A = WF minus EIR; B1 = EIR - ND; NSC = WF - iNDF; and B2 = iNDF. Grasses were Andropogon gayanus, Urochloa brizantha, Cynodon plectostachyus, and Megathyrsus maximus each grown in Veracruz, Mexico on four plots (5×5 m), fertilized (relationship equivalent to 0 and 100 kg N/ha) and clipped 35 d after the N fertilization. A complete randomized block design with factorial arrangement 4×2 and two replicates per treatment was used. Factors were grass species and N fertilization. Data were fit using a single-pool exponential model with lag. The volume (mL gas/100 mg OM), rate (%/h) and lag (h) were: WF (22.8; 5.3; 2.1); A (3.2; 15.7; 0.5); B1 (1.5; 15.7; 0.2); and B2 (18.3; 6.6; 5.2). Andropogon and Urochloa had higher NSC content compared to Megathyrsus and Cynodon but lower gas yield per unit of NSC. Rates of digestion for the B2 fraction ranged from 4 to 8 %/h; and NSC digestion rate averaged 15.7 %/h. Nitrogen fertilization reduced carbohydrate pool sizes but did not affect rates of digestion. It is concluded that the rates of digestion of the carbohydrate fractions differs by grass specie.Our goal was to determine the digestion rates of carbohydrate fractions A (sugars, oligosaccharides and organic acids), B1 (starch and soluble fiber), NSC (non-structural carbohydrates) and B2 (available NDF) in four tropical grasses using the gas production technique. Samples of whole forage (WF), residue insoluble in 90% ethanol (EIR) and isolated NDF (ND) were fermented in vitro and gas production measured. Gas volumes determined from the following fractions, A = WF minus EIR; B1 = EIR - ND; NSC = WF - ND; and B2 = ND. Grasses were Andropogon gayanus, Urochloa brizantha, Cynodon plectostachyus, and Megathyrsus maximum each grown in Veracruz, Mexico on four plots (5×5 m), fertilized (relationship equivalent to 0 and 100 kg N/ha) and clipped 35 d after the N fertilization. A complete randomized block design with factorial arrangement 4×2 and two replicates per treatment was used. Factors were grass species and N fertilization. Data were fit using a single-pool exponential model with lag. The volume (mL gas/100 mg OM), rate (%/h) and lag (h) were: WF (22.8; 5.3; 2.1); A (3.2; 15.7; 0.5); B1 (1.5; 15.7; 0.2); and B2 (18.3; 6.6; 5.2). Andropogon and Urochloa had higher NSC content compared to Megathyrsus and Cynodon but lower gas yield per unit of NSC. Rates of digestion for the B2 fraction ranged from 4 to 8 %/h; and NSC digestion rate averaged 15.7 %/h. Nitrogen fertilization reduced carbohydrate pool sizes but did not affect rates of digestion. It is concluded that ruminally available energy from SC and NSC in tropical forages should be revised more extensively
Decaying wood is a sodium source for mountain gorillas
Like several other non-human primates, mountain gorillas (Gorilla beringei beringei) in Bwindi Impenetrable National Park, Uganda consume decaying wood, an interesting but puzzling behaviour. This wood has little obvious nutritional value; it is low in protein and sugar, and high in lignin compared to other foods. We collected pieces of wood eaten and avoided by gorillas, and other foods consumed by gorillas, and measured their sodium content. Wood was substantially higher in sodium than other dietary items, and wood pieces from stumps eaten contained more sodium than those that were avoided. Wood represented only 3.9% of the wet weight food intake of gorillas, but contributed over 95% of dietary sodium, leading us to conclude that decaying wood is an important sodium source for Bwindi gorillas. Because sodium has been leached from the weathered soils characteristic of the subhumid and humid tropics, and because terrestrial plants generally do not require sodium, tropical herbivores, including gorillas, often encounter problems locating the sodium essential for their well-being. Decaying wood is an unexpected sodium source