39 research outputs found
A striking relationship between dust extinction and radio detection in DESI QSOs: evidence for a dusty blow-out phase in red QSOs
We present the first eight months of data from our secondary target programme within the ongoing Dark Energy Spectroscopic Instrument (DESI) survey. Our programme uses a mid-infrared and optical colour selection to preferentially target dust-reddened quasi-stellar objects (QSOs) that would have otherwise been missed by the nominal DESI QSO selection. So far, we have obtained optical spectra for 3038 candidates, of which âŒ70 per cent of the high-quality objects (those with robust redshifts) are visually confirmed to be Type 1 QSOs, consistent with the expected fraction from the main DESI QSO survey. By fitting a dust-reddened blue QSO composite to the QSO spectra, we find they are well-fitted by a normal QSO with up to AV âŒ4 mag of line-of-sight dust extinction. Utilizing radio data from the LOFAR Two-metre Sky Survey (LoTSS) DR2, we identify a striking positive relationship between the amount of line-of-sight dust extinction towards a QSO and the radio detection fraction, that is not driven by radio-loud systems, redshift and/or luminosity effects. This demonstrates an intrinsic connection between dust reddening and the production of radio emission in QSOs, whereby the radio emission is most likely due to low-powered jets or winds/outflows causing shocks in a dusty environment. On the basis of this evidence, we suggest that red QSOs may represent a transitional 'blow-out' phase in the evolution of QSOs, where winds and outflows evacuate the dust and gas to reveal an unobscured blue QSO
A striking relationship between dust extinction and radio detection in DESI QSOs: evidence for a dusty blow-out phase in red QSOs
We present the first eight months of data from our secondary target program
within the ongoing Dark Energy Spectroscopic Instrument (DESI) survey. Our
program uses a mid-infrared and optical colour selection to preferentially
target dust-reddened QSOs that would have otherwise been missed by the nominal
DESI QSO selection. So far we have obtained optical spectra for 3038
candidates, of which ~70% of the high-quality objects (those with robust
redshifts) are visually confirmed to be Type 1 QSOs, consistent with the
expected fraction from the main DESI QSO survey. By fitting a dust-reddened
blue QSO composite to the QSO spectra, we find they are well-fitted by a normal
QSO with up to Av~4 mag of line-of-sight dust extinction. Utilizing radio data
from the LOFAR Two-metre Sky Survey (LoTSS) DR2, we identify a striking
positive relationship between the amount of line-of-sight dust extinction
towards a QSO and the radio detection fraction, that is not driven by
radio-loud systems, redshift and/or luminosity effects. This demonstrates an
intrinsic connection between dust reddening and the production of radio
emission in QSOs, whereby the radio emission is most likely due to low-powered
jets or winds/outflows causing shocks in a dusty environment. On the basis of
this evidence we suggest that red QSOs may represent a transitional "blow-out"
phase in the evolution of QSOs, where winds and outflows evacuate the dust and
gas to reveal an unobscured blue QSO.Comment: 21 pages, 17 figures, 6 tables, accepted by MNRA
The Early Data Release of the Dark Energy Spectroscopic Instrument
\ua9 2024. The Author(s). Published by the American Astronomical Society. The Dark Energy Spectroscopic Instrument (DESI) completed its 5 month Survey Validation in 2021 May. Spectra of stellar and extragalactic targets from Survey Validation constitute the first major data sample from the DESI survey. This paper describes the public release of those spectra, the catalogs of derived properties, and the intermediate data products. In total, the public release includes good-quality spectral information from 466,447 objects targeted as part of the Milky Way Survey, 428,758 as part of the Bright Galaxy Survey, 227,318 as part of the Luminous Red Galaxy sample, 437,664 as part of the Emission Line Galaxy sample, and 76,079 as part of the Quasar sample. In addition, the release includes spectral information from 137,148 objects that expand the scope beyond the primary samples as part of a series of secondary programs. Here, we describe the spectral data, data quality, data products, Large-Scale Structure science catalogs, access to the data, and references that provide relevant background to using these spectra
Validation of the Scientific Program for the Dark Energy Spectroscopic Instrument
The Dark Energy Spectroscopic Instrument (DESI) was designed to conduct a
survey covering 14,000 deg over five years to constrain the cosmic
expansion history through precise measurements of Baryon Acoustic Oscillations
(BAO). The scientific program for DESI was evaluated during a five month Survey
Validation (SV) campaign before beginning full operations. This program
produced deep spectra of tens of thousands of objects from each of the stellar
(MWS), bright galaxy (BGS), luminous red galaxy (LRG), emission line galaxy
(ELG), and quasar target classes. These SV spectra were used to optimize
redshift distributions, characterize exposure times, determine calibration
procedures, and assess observational overheads for the five-year program. In
this paper, we present the final target selection algorithms, redshift
distributions, and projected cosmology constraints resulting from those
studies. We also present a `One-Percent survey' conducted at the conclusion of
Survey Validation covering 140 deg using the final target selection
algorithms with exposures of a depth typical of the main survey. The Survey
Validation indicates that DESI will be able to complete the full 14,000 deg
program with spectroscopically-confirmed targets from the MWS, BGS, LRG, ELG,
and quasar programs with total sample sizes of 7.2, 13.8, 7.46, 15.7, and 2.87
million, respectively. These samples will allow exploration of the Milky Way
halo, clustering on all scales, and BAO measurements with a statistical
precision of 0.28% over the redshift interval , 0.39% over the redshift
interval , and 0.46% over the redshift interval .Comment: 42 pages, 18 figures, accepted by A
Overview of the instrumentation for the Dark Energy Spectroscopic Instrument
The Dark Energy Spectroscopic Instrument (DESI) embarked on an ambitious 5 yr survey in 2021 May to explore the nature of dark energy with spectroscopic measurements of 40 million galaxies and quasars. DESI will determine precise redshifts and employ the baryon acoustic oscillation method to measure distances from the nearby universe to beyond redshift z > 3.5, and employ redshift space distortions to measure the growth of structure and probe potential modifications to general relativity. We describe the significant instrumentation we developed to conduct the DESI survey. This includes: a wide-field, 3.°2 diameter prime-focus corrector; a focal plane system with 5020 fiber positioners on the 0.812 m diameter, aspheric focal surface; 10 continuous, high-efficiency fiber cable bundles that connect the focal plane to the spectrographs; and 10 identical spectrographs. Each spectrograph employs a pair of dichroics to split the light into three channels that together record the light from 360â980 nm with a spectral resolution that ranges from 2000â5000. We describe the science requirements, their connection to the technical requirements, the management of the project, and interfaces between subsystems. DESI was installed at the 4 m Mayall Telescope at Kitt Peak National Observatory and has achieved all of its performance goals. Some performance highlights include an rms positioner accuracy of better than 0.âł1 and a median signal-to-noise ratio of 7 of the [O ii] doublet at 8 Ă 10â17 erg sâ1 cmâ2 in 1000 s for galaxies at z = 1.4â1.6. We conclude with additional highlights from the on-sky validation and commissioning, key successes, and lessons learned
Overview of the Instrumentation for the Dark Energy Spectroscopic Instrument
The Dark Energy Spectroscopic Instrument (DESI) embarked on an ambitious 5 yr survey in 2021 May to explore the nature of dark energy with spectroscopic measurements of 40 million galaxies and quasars. DESI will determine precise redshifts and employ the baryon acoustic oscillation method to measure distances from the nearby universe to beyond redshift z \u3e 3.5, and employ redshift space distortions to measure the growth of structure and probe potential modifications to general relativity. We describe the significant instrumentation we developed to conduct the DESI survey. This includes: a wide-field, 3.°2 diameter prime-focus corrector; a focal plane system with 5020 fiber positioners on the 0.812 m diameter, aspheric focal surface; 10 continuous, high-efficiency fiber cable bundles that connect the focal plane to the spectrographs; and 10 identical spectrographs. Each spectrograph employs a pair of dichroics to split the light into three channels that together record the light from 360-980 nm with a spectral resolution that ranges from 2000-5000. We describe the science requirements, their connection to the technical requirements, the management of the project, and interfaces between subsystems. DESI was installed at the 4 m Mayall Telescope at Kitt Peak National Observatory and has achieved all of its performance goals. Some performance highlights include an rms positioner accuracy of better than 0.âł1 and a median signal-to-noise ratio of 7 of the [O ii] doublet at 8 Ă 10-17 erg s-1 cm-2 in 1000 s for galaxies at z = 1.4-1.6. We conclude with additional highlights from the on-sky validation and commissioning, key successes, and lessons learned
Overview of the instrumentation for the Dark Energy Spectroscopic Instrument
The Dark Energy Spectroscopic Instrument (DESI) embarked on an ambitious 5 yr survey in 2021 May to explore the nature of dark energy with spectroscopic measurements of 40 million galaxies and quasars. DESI will determine precise redshifts and employ the baryon acoustic oscillation method to measure distances from the nearby universe to beyond redshift z > 3.5, and employ redshift space distortions to measure the growth of structure and probe potential modifications to general relativity. We describe the significant instrumentation we developed to conduct the DESI survey. This includes: a wide-field, 3.°2 diameter prime-focus corrector; a focal plane system with 5020 fiber positioners on the 0.812 m diameter, aspheric focal surface; 10 continuous, high-efficiency fiber cable bundles that connect the focal plane to the spectrographs; and 10 identical spectrographs. Each spectrograph employs a pair of dichroics to split the light into three channels that together record the light from 360â980 nm with a spectral resolution that ranges from 2000â5000. We describe the science requirements, their connection to the technical requirements, the management of the project, and interfaces between subsystems. DESI was installed at the 4 m Mayall Telescope at Kitt Peak National Observatory and has achieved all of its performance goals. Some performance highlights include an rms positioner accuracy of better than 0.âł1 and a median signal-to-noise ratio of 7 of the [O ii] doublet at 8 Ă 10â17 erg sâ1 cmâ2 in 1000 s for galaxies at z = 1.4â1.6. We conclude with additional highlights from the on-sky validation and commissioning, key successes, and lessons learned
Recommended from our members
A striking relationship between dust extinction and radio detection in DESI QSOs: evidence for a dusty blow-out phase in red QSOs
We present the first eight months of data from our secondary target programme within the ongoing Dark Energy Spectroscopic Instrument (DESI) survey. Our programme uses a mid-infrared and optical colour selection to preferentially target dust-reddened quasi-stellar objects (QSOs) that would have otherwise been missed by the nominal DESI QSO selection. So far, we have obtained optical spectra for 3038 candidates, of which âŒ70 per cent of the high-quality objects (those with robust redshifts) are visually confirmed to be Type 1 QSOs, consistent with the expected fraction from the main DESI QSO survey. By fitting a dust-reddened blue QSO composite to the QSO spectra, we find they are well-fitted by a normal QSO with up to AV âŒ4 mag of line-of-sight dust extinction. Utilizing radio data from the LOFAR Two-metre Sky Survey (LoTSS) DR2, we identify a striking positive relationship between the amount of line-of-sight dust extinction towards a QSO and the radio detection fraction, that is not driven by radio-loud systems, redshift and/or luminosity effects. This demonstrates an intrinsic connection between dust reddening and the production of radio emission in QSOs, whereby the radio emission is most likely due to low-powered jets or winds/outflows causing shocks in a dusty environment. On the basis of this evidence, we suggest that red QSOs may represent a transitional 'blow-out' phase in the evolution of QSOs, where winds and outflows evacuate the dust and gas to reveal an unobscured blue QSO