11,485 research outputs found
High-growth-rate magnetohydrodynamic instability in differentially rotating compressible flow
The transport of angular momentum in the outward direction is the fundamental
requirement for accretion to proceed in an accretion disc. This objective can
be achieved if the accretion flow is turbulent. Instabilities are one of the
sources for the turbulence. We study a differentially rotating compressive flow
in the presence of non vanishing radial and azimuthal magnetic field and
demonstrate the occurrence of a high growth rate instability. This instability
operates in a region where magnetic energy density exceeds the rotational
energy density
Theory of double resonance magnetometers based on atomic alignment
We present a theoretical study of the spectra produced by
optical-radio-frequency double resonance devices, in which resonant linearly
polarized light is used in the optical pumping and detection processes. We
extend previous work by presenting algebraic results which are valid for atomic
states with arbitrary angular momenta, arbitrary rf intensities, and arbitrary
geometries. The only restriction made is the assumption of low light intensity.
The results are discussed in view of their use in optical magnetometers
Efficient Data Averaging for Spin Noise Spectroscopy in Semiconductors
Spin noise spectroscopy (SNS) is the perfect tool to investigate electron
spin dynamics in semiconductors at thermal equilibrium. We simulate SNS
measurements and show that ultrafast digitizers with low bit depth enable
sensitive, high bandwidth SNS in the presence of strong optical background shot
noise. The simulations reveal that optimized input load at the digitizer is
crucial for efficient spin noise detection while the bit depth influences the
sensitivity rather weakly
Noise spectroscopy and interlayer phase-coherence in bilayer quantum Hall systems
Bilayer quantum Hall systems develop strong interlayer phase-coherence when
the distance between layers is comparable to the typical distance between
electrons within a layer. The phase-coherent state has until now been
investigated primarily via transport measurements. We argue here that
interlayer current and charge-imbalance noise studies in these systems will be
able to address some of the key experimental questions. We show that the
characteristic frequency of current-noise is that of the zero wavevector
collective mode, which is sensitive to the degree of order in the system. Local
electric potential noise measured in a plane above the bilayer system on the
other hand is sensitive to finite-wavevector collective modes and hence to the
soft-magnetoroton picture of the order-disorder phase transition.Comment: 5 pages, 2 figure
Ultrafast Resonant Polarization Interferometry: Towards the First Direct Detection of Vacuum Polarization
Vacuum polarization, an effect predicted nearly 70 years ago, is still yet to
be directly detected despite significant experimental effort. Previous attempts
have made use of large liquid-helium cooled electromagnets which inadvertently
generate spurious signals that mask the desired signal. We present a novel
approach for the ultra-sensitive detection of optical birefringence that can be
usefully applied to a laboratory detection of vacuum polarization. The new
technique has a predicted birefringence measurement sensitivity of in a 1 second measurement. When combined with the extreme
polarizing fields achievable in this design we predict that a vacuum
polarization signal will be seen in a measurement of just a few days in
duration.Comment: 9 pages, 2 figures. submitted to PR
Skin effect with arbitrary specularity in Maxwellian plasma
The problem of skin effect with arbitrary specularity in maxwellian plasma
with specular--diffuse boundary conditions is solved. A new analytical method
is developed that makes it possible to to obtain a solution up to an arbitrary
degree of accuracy. The method is based on the idea of symmetric continuation
not only the electric field, but also electron distribution function. The
solution is obtained in a form of von Neumann series.Comment: 7 pages, 2 figure
Light diffraction by a strong standing electromagnetic wave
The nonlinear quantum interaction of a linearly polarized x-ray probe beam
with a focused intense standing laser wave is studied theoretically. Because of
the tight focusing of the standing laser pulse, diffraction effects arise for
the probe beam as opposed to the corresponding plane wave scenario. A
quantitative estimate for realistic experimental conditions of the ellipticity
and the rotation of the main polarization plane acquired by the x-ray probe
after the interaction shows that the implementation of such vacuum effects is
feasible with future X-ray Free Electron Laser light.Comment: 5 pages, 2 figures. Published versio
Quantum, Multi-Body Effects and Nuclear Reaction Rates in Plasmas
Detailed calculations of the contribution from off-shell effects to the
quasiclassical tunneling of fusing particles are provided. It is shown that
these effects change the Gamow rates of certain nuclear reactions in dense
plasma by several orders of magnitude.Comment: 11 pages; change of content: added clarification of one of the
important steps in the derivatio
Probing photo-ionization: simulations of positive streamers in varying N2:O2 mixtures
Photo-ionization is the accepted mechanism for the propagation of positive
streamers in air though the parameters are not very well known; the efficiency
of this mechanism largely depends on the presence of both nitrogen and oxygen.
But experiments show that streamer propagation is amazingly robust against
changes of the gas composition; even for pure nitrogen with impurity levels
below 1 ppm streamers propagate essentially with the same velocity as in air,
but their minimal diameter is smaller, and they branch more frequently.
Additionally, they move more in a zigzag fashion and sometimes exhibit a
feathery structure. In our simulations, we test the relative importance of
photo-ionization and of the background ionization from pulsed repetitive
discharges, in air as well as in nitrogen with 1 ppm O2 . We also test
reasonable parameter changes of the photo-ionization model. We find that photo-
ionization dominates streamer propagation in air for repetition frequencies of
at least 1 kHz, while in nitrogen with 1 ppm O2 the effect of the repetition
frequency has to be included above 1 Hz. Finally, we explain the feather-like
structures around streamer channels that are observed in experiments in
nitrogen with high purity, but not in air.Comment: 12 figure
Photon splitting in a laser field
Photon splitting due to vacuum polarization in a laser field is considered.
Using an operator technique, we derive the amplitudes for arbitrary strength,
spectral content and polarization of the laser field. The case of a
monochromatic circularly polarized laser field is studied in detail and the
amplitudes are obtained as three-fold integrals. The asymptotic behavior of the
amplitudes for various limits of interest are investigated also in the case of
a linearly polarized laser field. Using the obtained results, the possibility
of experimental observation of the process is discussed.Comment: 31 pages, 4 figure
- …