7 research outputs found

    Mosquito Ovitraps IoT Sensing System (MOISS): Internet of Things-based System for Continuous, Real-Time and Autonomous Environment Monitoring

    Get PDF
    The monitoring of environmental parameters is indispensable for controlling mosquito populations. The abundance of mosquitoes mainly depends on climate conditions, weather and water (i.e., physicochemical parameters). Traditional techniques for immature mosquito surveillance are based on remote sensing and weather stations as primary data sources for environmental variables, as well as water samples which are collected in the field by environmental health agents to characterize water quality impacts. Such tools may lead to misidentifications, especially when comprehensive surveillance is required. Innovative methods for timely and continuous monitoring are crucial for improving the mosquito surveillance system, thus, increasing the efficiency of mosquitoes' abundance models and providing real-time prediction of high-risk areas for mosquito infestation and breeding. Here, we illustrate the design, implementation, and deployment of a novel IoT -based environment monitoring system using a combination of weather and water sensors with a real-time connection to the cloud for data transmission in Madeira Island, Portugal. The study provides an approach to monitoring some environmental parameters, such as weather and water, that are related to mosquito infestation at a fine spatiotemporal scale. Our study demonstrates how a combination of sensor networks and clouds can be used to create a smart and fully autonomous system to support mosquito surveillance and enhance the decision-making of local environmental agents

    The Response of Governments and Public Health Agencies to COVID-19 Pandemics on Social Media: A Multi-Country Analysis of Twitter Discourse

    Get PDF
    During the COVID-19 pandemic, information is being rapidly shared by public health experts and researchers through social media platforms. Whilst government policies were disseminated and discussed, fake news and misinformation simultaneously created a corresponding wave of "infodemics." This study analyzed the discourse on Twitter in several languages, investigating the reactions to government and public health agency social media accounts that share policy decisions and official messages. The study collected messages from 21 official Twitter accounts of governments and public health authorities in the UK, US, Mexico, Canada, Brazil, Spain, and Nigeria, from 15 March to 29 May 2020. Over 2 million tweets in various languages were analyzed using a mixed-methods approach to understand the messages both quantitatively and qualitatively. Using automatic, text-based clustering, five topics were identified for each account and then categorized into 10 emerging themes. Identified themes include political, socio-economic, and population-protection issues, encompassing global, national, and individual levels. A comparison was performed amongst the seven countries analyzed and the United Kingdom (Scotland, Northern Ireland, and England) to find similarities and differences between countries and government agencies. Despite the difference in language, country of origin, epidemiological contexts within the countries, significant similarities emerged. Our results suggest that other than general announcement and reportage messages, the most-discussed topic is evidence-based leadership and policymaking, followed by how to manage socio-economic consequences

    MEWAR: Development of a Cross-Platform Mobile Application and Web Dashboard System for Real-Time Mosquito Surveillance in Northeast Brazil

    Get PDF
    Mosquito surveillance is a crucial process for understanding the population dynamics of mosquitoes, as well as implementing interventional programs for controlling and preventing the spread of mosquito-borne diseases. Environmental surveillance agents who performing routine entomological surveys at properties in areas where mosquito-borne diseases are endemic play a critical role in vector surveillance by searching and destroying mosquito hotspots as well as collate information on locations with increased infestation. Currently, the process of recording information on paper-based forms is time-consuming and painstaking due to manual effort. The introduction of mobile surveillance applications will therefore improve the process of data collection, timely reporting, and field worker performance. Digital-based surveillance is critical in reporting real-time data; indeed, the real-time capture of data with phones could be used for predictive analytical models to predict mosquito population dynamics, enabling early warning detection of hotspots and thus alerting fieldworker agents into immediate action. This paper describes the development of a cross-platform digital system for improving mosquito surveillance in Brazil. It comprises of two components: a dashboard for managers and a mobile application for health agents. The former enables managers to assign properties to health workers who then survey them for mosquitoes and to monitor the progress of inspection visits in real-time. The latter, which is primarily designed as a data collection tool, enables the environmental surveillance agents to act on their assigned tasks of recording the details of the properties at inspections by filling out digital forms built into the mobile application, as well as details relating to mosquito infestation. The system presented in this paper was co-developed with significant input with environmental agents in two Brazilian cities where it is currently being piloted

    Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning

    Get PDF
    Dengue has become a challenge for many countries. Arboviruses transmitted by Aedes aegypti spread rapidly over the last decades. The emergence chikungunya fever and zika in South America poses new challenges to vector monitoring and control. This situation got worse from 2015 and 2016, with the rapid spread of chikungunya, causing fever and muscle weakness, and Zika virus, related to cases of microcephaly in newborns and the occurrence of Guillain-Barret syndrome, an autoimmune disease that affects the nervous system. The objective of this work was to construct a tool to forecast the distribution of arboviruses transmitted by the mosquito Aedes aegypti by implementing dengue, zika and chikungunya transmission predictors based on machine learning, focused on multilayer perceptrons neural networks, support vector machines and linear regression models. As a case study, we investigated forecasting models to predict the spatio-temporal distribution of cases from primary health notification data and climate variables (wind velocity, temperature and pluviometry) from Recife, Brazil, from 2013 to 2016, including 2015’s outbreak. The use of spatio-temporal analysis over multilayer perceptrons and support vector machines results proved to be very effective in predicting the distribution of arbovirus cases. The models indicate that the southern and western regions of Recife were very susceptible to outbreaks in the period under investigation. The proposed approach could be useful to support health managers and epidemiologists to prevent outbreaks of arboviruses transmitted by Aedes aegypti and promote public policies for health promotion and sanitation

    A review exploring the overarching burden of Zika virus with emphasis on epidemiological case studies from Brazil

    Get PDF
    This paper explores the main factors for mosquito-borne transmission of the Zika virus by focusing on environmental, anthropogenic, and social risks. A literature review was conducted bringing together related information from this genre of research from peer-reviewed publications. It was observed that environmental conditions, especially precipitation, humidity, and temperature, played a role in the transmission. Furthermore, anthropogenic factors including sanitation, urbanization, and environmental pollution promote the transmission by affecting the mosquito density. In addition, socioeconomic factors such as poverty as well as social inequality and low-quality housing have also an impact since these are social factors that limit access to certain facilities or infrastructure which, in turn, promote transmission when absent (e.g., piped water and screened windows). Finally, the paper presents short-, mid-, and long-term preventative solutions together with future perspectives. This is the first review exploring the effects of anthropogenic aspects on Zika transmission with a special emphasis in Brazil

    Spatiotemporal forecasting for dengue, chikungunya fever and Zika using machine learning and artificial expert committees based on meta-heuristics

    No full text
    Purpose: Dengue is considered one of the biggest public health problems in recent decades. Climate and demographic changes, the disorderly growth of cities and international trade have brought new arboviruses such as chikungunya and Zika. Control of arboviruses depends on control of the vector: the Aedes aegypti mosquito. Objective: In this work, we propose a methodology for building disease predictors capable of predicting infected cases and locations based on machine learning. We also propose an artificial experts committee based on meta-heuristic methods to detect the most relevant risk factors. Method As a case study, we applied the methodology to forecast dengue, chikungunya and Zika, with data from the City of Recife, Brazil, from 2013 to 2016. We used arboviruses cases data and climatic and environmental information: wind speeds, temperatures and precipitation. Results The best prediction results were obtained with 10-tree Random Forest regression, with Pearson’s correlation above 0.99 and RMSE (%) below 6%. Additionally, the artificial experts committee was able to present the most relevant factors for predicting cases in each two-month period. Conclusion: The spatiotemporal prediction results showed the evolution of arboviruses, pointing out as major focuses on both regions richer in urban green areas and low-income neighborhood with irregular water supply. Determining the most relevant factors for prediction, as well as the spatial distribution of cases, can be useful for the planning and execution of public policies aimed at improving the health infrastructure and planning and controlling the vector
    corecore