71 research outputs found

    Convergent expansions for Random Cluster Model with q>0 on infinite graphs

    Full text link
    In this paper we extend our previous results on the connectivity functions and pressure of the Random Cluster Model in the highly subcritical phase and in the highly supercritical phase, originally proved only on the cubic lattice Zd\Z^d, to a much wider class of infinite graphs. In particular, concerning the subcritical regime, we show that the connectivity functions are analytic and decay exponentially in any bounded degree graph. In the supercritical phase, we are able to prove the analyticity of finite connectivity functions in a smaller class of graphs, namely, bounded degree graphs with the so called minimal cut-set property and satisfying a (very mild) isoperimetric inequality. On the other hand we show that the large distances decay of finite connectivity in the supercritical regime can be polynomially slow depending on the topological structure of the graph. Analogous analyticity results are obtained for the pressure of the Random Cluster Model on an infinite graph, but with the further assumptions of amenability and quasi-transitivity of the graph.Comment: In this new version the introduction has been revised, some references have been added, and many typos have been corrected. 37 pages, to appear in Communications on Pure and Applied Analysi

    Cluster expansion methods in rigorous statistical mechanics

    Full text link
    This draft is intended to be used as class notes for a grad course on rigorous statistical mechanics at math department of UFMG. It should be considered as a very prelimivary version and a work in progress. Several chapters lack references, exercises, and revision

    On Lennard-Jones type potentials and hard-core potentials with an attractive tail

    Full text link
    We revisit an old tree graph formula, namely the Brydges-Federbush tree identity, and use it to get new bounds for the convergence radius of the Mayer series for gases of continuous particles interacting via non absolutely summable pair potentials with an attractive tail including Lennard-Jones type pair potentials

    Properly coloured copies and rainbow copies of large graphs with small maximum degree

    Full text link
    Let G be a graph on n vertices with maximum degree D. We use the Lov\'asz local lemma to show the following two results about colourings c of the edges of the complete graph K_n. If for each vertex v of K_n the colouring c assigns each colour to at most (n-2)/22.4D^2 edges emanating from v, then there is a copy of G in K_n which is properly edge-coloured by c. This improves on a result of Alon, Jiang, Miller, and Pritikin [Random Struct. Algorithms 23(4), 409-433, 2003]. On the other hand, if c assigns each colour to at most n/51D^2 edges of K_n, then there is a copy of G in K_n such that each edge of G receives a different colour from c. This proves a conjecture of Frieze and Krivelevich [Electron. J. Comb. 15(1), R59, 2008]. Our proofs rely on a framework developed by Lu and Sz\'ekely [Electron. J. Comb. 14(1), R63, 2007] for applying the local lemma to random injections. In order to improve the constants in our results we use a version of the local lemma due to Bissacot, Fern\'andez, Procacci, and Scoppola [preprint, arXiv:0910.1824].Comment: 9 page
    corecore