916 research outputs found

    X-Shooter study of accretion in ρ\rho-Ophiucus: very low-mass stars and brown dwarfs

    Get PDF
    We present new VLT/X-Shooter optical and NIR spectra of a sample of 17 candidate young low-mass stars and BDs in the rho-Ophiucus cluster. We derived SpT and Av for all the targets, and then we determined their physical parameters. All the objects but one have M*<0.6 Msun, and 8 have mass below or close to the hydrogen-burning limit. Using the intensity of various emission lines present in their spectra, we determined the Lacc and Macc for all the objects. When compared with previous works targeting the same sample, we find that, in general, these objects are not as strongly accreting as previously reported, and we suggest that the reason is our more accurate estimate of the photospheric parameters. We also compare our findings with recent works in other slightly older star-forming regions to investigate possible differences in the accretion properties, but we find that the accretion properties for our targets have the same dependence on the stellar and substellar parameters as in the other regions. This leads us to conclude that we do not find evidence for a different dependence of Macc with M* when comparing low-mass stars and BDs. Moreover, we find a similar small (1 dex) scatter in the Macc-M* relation as in some of our recent works in other star-forming regions, and no significant differences in Macc due to different ages or properties of the regions. The latter result suffers, however, from low statistics and sample selection biases in the current studies. The small scatter in the Macc-M* correlation confirms that Macc in the literature based on uncertain photospheric parameters and single accretion indicators, such as the Ha width, can lead to a scatter that is unphysically large. Our studies show that only broadband spectroscopic surveys coupled with a detailed analysis of the photospheric and accretion properties allows us to properly study the evolution of disk accretion rates.Comment: accepted for publication in Astronomy & Astrophysics. Abstract shortened to fit arXiv constraint

    Contemporaneous broad-band photometry and Hα\alpha observations of T Tauri stars

    Get PDF
    The study of contemporaneous variations of the continuum flux and emission lines is of great importance to understand the different astrophysical processes at work in T Tauri stars. In this paper we present the results of a simultaneous BVRIBVRI and Hα\alpha photometric monitoring, contemporaneous to medium-resolution spectroscopy of six T Tauri stars in the Taurus-Auriga star forming region. We have characterized the Hα\alpha photometric system using synthetic templates and the contemporaneous spectra of the targets. We show that we can achieve a precision corresponding to 2−-3 \AA\ in the Hα\alpha equivalent width, in typical observing conditions. The spectral analysis has allowed us to determine the basic stellar parameters and the values of quantities related to the accretion. In particular, we have measured a significant veiling only for the three targets with the strongest Hα\alpha emission (T Tau, FM Tau, and DG Tau). The broad-band photometric variations are found to be in the range 0.05−-0.70 mag and are often paired to variations in the Hα\alpha intensity, which becomes stronger when the stellar continuum is weaker. In addition, we have mostly observed a redder V−IV-I and a bluer B−VB-V color as the stars become fainter. For most of the targets, the timescales of these variations seem to be longer than the rotation period. One exception is T Tau, for which the broad-band photometry varies with the rotation period. The most plausible interpretation of these photometric and Hα\alpha variations is that they are due to non-stationary mass accretion onto the stars, but rotational modulation can play a major role in some cases.Comment: 21 pages, 11 figures, accepted for publication in Acta Astronomic

    Elemental abundances of low-mass stars in nearby young associations: AB Doradus, Carina Near, and Ursa Major

    Full text link
    We present stellar parameters and abundances of 11 elements (Li, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, and Zn) of 13 F6-K2 main-sequence stars in the young groups AB Doradus, Carina Near, and Ursa Major. The exoplanet-host star \iota Horologii is also analysed. The three young associations have lithium abundance consistent with their age. All other elements show solar abundances. The three groups are characterised by a small scatter in all abundances, with mean [Fe/H] values of 0.10 (\sigma=0.03), 0.08 (\sigma=0.05), and 0.01 (\sigma=0.03) dex for AB Doradus, Carina Near, and Ursa Major, respectively. The distribution of elemental abundances appears congruent with the chemical pattern of the Galactic thin disc in the solar vicinity, as found for other young groups. This means that the metallicity distribution of nearby young stars, targets of direct-imaging planet-search surveys, is different from that of old, field solar-type stars, i.e. the typical targets of radial velocity surveys. The young planet-host star \iota Horologii shows a lithium abundance lower than that found for the young association members. It is found to have a slightly super-solar iron abundance ([Fe/H]=0.16+-0.09), while all [X/Fe] ratios are similar to the solar values. Its elemental abundances are close to those of the Hyades cluster derived from the literature, which seems to reinforce the idea of a possible common origin with the primordial cluster.Comment: 16 pages, 2 figures, 6 tables. Accepted for publication in MNRA

    The VISTA Orion mini-survey: star formation in the Lynds 1630 North cloud

    Get PDF
    The Orion cloud complex presents a variety of star formation mechanisms and properties and it is still one of the most intriguing targets for star formation studies. We present VISTA/VIRCAM near-infrared observations of the L1630N star forming region, including the stellar clusters NGC 2068 and NGC 2071, in the Orion molecular cloud B and discuss them in combination with Spitzer data. We select 186 young stellar object (YSO) candidates in the region on the basis of multi-colour criteria, confirm the YSO nature of the majority of them using published spectroscopy from the literature, and use this sample to investigate the overall star formation properties in L1630N. The K-band luminosity function of L1630N is remarkably similar to that of the Trapezium cluster, i.e., it presents a broad peak in the range 0.3-0.7 M⊙_\odot and a fraction of sub-stellar objects of ∌\sim20%. The fraction of YSOs still surrounded by disk/envelopes is very high (∌\sim85%) compared to other star forming regions of similar age (1-2 Myr), but includes some uncertain corrections for diskless YSOs. Yet, a possibly high disk fraction together with the fact that 1/3 of the cloud mass has a gas surface density above the threshold for star formation (∌\sim129 M⊙_\odot pc−2^{-2}), points towards a still on-going star formation activity in L1630N. The star formation efficiency (SFE), star formation rate (SFR) and density of star formation of L1630N are within the ranges estimated for galactic star forming regions by the Spitzer "core to disk" and "Gould's Belt" surveys. However, the SFE and SFR are lower than the average value measured in the Orion A cloud and, in particular, lower than that in the southern regions of L1630. This might suggest different star formation mechanisms within the L1630 cloud complex.Comment: 22 pages, 9 figure

    The Chamaeleon II low-mass star-forming region: radial velocities, elemental abundances, and accretion properties

    Full text link
    Radial velocities, elemental abundances, and accretion properties of members of star-forming regions (SFRs) are important for understanding star and planet formation. While infrared observations reveal the evolutionary status of the disk, optical spectroscopy is fundamental to acquire information on the properties of the central star and on the accretion characteristics. 2MASS archive data and the Spitzer c2d survey of the Chamaeleon II dark cloud have provided disk properties of a large number of young stars. We complement these data with spectroscopy with the aim of providing physical stellar parameters and accretion properties. We use FLAMES/UVES+GIRAFFE observations of 40 members of Cha II to measure radial velocities through cross-correlation technique, Li abundances by means of curves of growth, and for a suitable star elemental abundances of Fe, Al, Si, Ca, Ti, and Ni using the code MOOG. From the equivalent widths of the Halpha, Hbeta, and the HeI-5876, 6678, 7065 Angstrom emission lines, we estimate the mass accretion rates, dMacc/dt, for all the objects. We derive a radial velocity distribution for the Cha II stars (=11.4+-2.0 km/s). We find dMacc/dt prop. to Mstar^1.3 and to Age^(-0.82) in the 0.1-1.0 Msun mass regime, and a mean dMacc/dt for Cha II of ~7*10^(-10) Msun/yr. We also establish a relationship between the HeI-7065 Angstrom line emission and the accretion luminosity. The radial velocity distributions of stars and gas in Cha II are consistent. The spread in dMacc/dt at a given stellar mass is about one order of magnitude and can not be ascribed entirely to short timescale variability. Analyzing the relation between dMacc/dt and the colors in Spitzer and 2MASS bands, we find indications that the inner disk changes from optically thick to optically thin at dMacc/dt~10^(-10) Msun/yr. Finally, the disk fraction is consistent with the age of Cha II.Comment: 21 Pages, 15 Figures, 7 Tables. Accepted for publication in Astronomy and Astrophysics. Abstract shortene

    On the accretion properties of young stellar objects in the L1615/L1616 cometary cloud

    Get PDF
    We present the results of FLAMES/UVES and FLAMES/GIRAFFE spectroscopic observations of 23 low-mass stars in the L1615/L1616 cometary cloud, complemented with FORS2 and VIMOS spectroscopy of 31 additional stars in the same cloud. L1615/L1616 is a cometary cloud where the star formation was triggered by the impact of the massive stars in the Orion OB association. From the measurements of the lithium abundance and radial velocity, we confirm the membership of our sample to the cloud. We use the equivalent widths of the Hα\alpha, HÎČ\beta, and the HeI λ\lambda5876, λ\lambda6678, λ\lambda7065 \AA emission lines to calculate the accretion luminosities, LaccL_{\rm acc}, and the mass accretion rates, M˙acc\dot M_{\rm acc}. We find in L1615/L1616 a fraction of accreting objects (∌30%\sim 30\%), which is consistent with the typical fraction of accretors in T associations of similar age (∌3\sim 3 Myr). The mass accretion rate for these stars shows a trend with the mass of the central object similar to that found for other star-forming regions, with a spread at a given mass which depends on the evolutionary model used to derive the stellar mass. Moreover, the behavior of the 2MASS/WISE2MASS/WISE colors with M˙acc\dot M_{\rm acc} indicates that strong accretors with log⁥M˙acc>−8.5\log \dot M_{\rm acc} \gt -8.5 dex show large excesses in the JHKsJHK{\rm s} bands, as in previous studies. We also conclude that the accretion properties of the L1615/L1616 members are similar to those of young stellar objects in T associations, like Lupus.Comment: Accepted by Astronomy and Astrophysics. 17 pages, 11 figures, 6 table

    Detection of delta Scuti-like pulsation in H254, a pre-main sequence F-type star in IC 348

    Full text link
    We present time series observations of intermediate mass PMS stars belonging to the young star cluster IC 348. The new data reveal that a young member of the cluster, H254, undergoes periodic light variations with delta Scuti-like characteristics. This occurrence provides an unambiguous evidence confirming the prediction that intermediate-mass pre-main sequence (PMS) stars should experience this transient instability during their approach to the main-sequence. On the basis of the measured frequency f=7.406 c/d, we are able to constrain the intrinsic stellar parameters of H254 by means of linear, non adiabatic, radial pulsation models. The range of the resulting luminosity and effective temperature permitted by the models is narrower than the observational values. In particular, the pulsation analysis allows to derive an independent estimate of the distance to IC 348 of about 320 pc. Further observations could either confirm the monoperiodic nature of H254 or reveal the presence of other frequencies.Comment: 7 pages, including 7 postscript figures, accepted for publication on A&

    X-Shooter spectroscopy of young stellar objects - VI - HI line decrements

    Get PDF
    Hydrogen recombination emission lines commonly observed in accreting young stellar objects represent a powerful tracer for the gas conditions in the circumstellar structures. Here we perform a study of the HI decrements and line profiles, from the Balmer and Paschen lines detected in the X-Shooter spectra of a homogeneous sample of 36 T Tauri stars in Lupus, the accretion and stellar properties of which were already derived in a previous work. We aim to obtain information on the gas physical conditions to derive a consistent picture of the HI emission mechanisms in pre-main sequence low-mass stars. We have empirically classified the sources based on their HI line profiles and decrements. We identified four Balmer decrement types (classified as 1, 2, 3, and 4) and three Paschen decrement types (A, B, and C), characterised by different shapes. We first discussed the connection between the decrement types and the source properties and then compared the observed decrements with predictions from recently published local line excitation models. One third of the objects show lines with narrow symmetric profiles, and present similar Balmer and Paschen decrements (straight decrements, types 2 and A). Lines in these sources are consistent with optically thin emission from gas with hydrogen densities of order 10^9 cm^-3 and 5000<T<15000 K. These objects are associated with low mass accretion rates. Type 4 (L-shaped) Balmer and type B Paschen decrements are found in conjunction with very wide line profiles and are characteristic of strong accretors, with optically thick emission from high-density gas (log n_H > 11 cm^-3). Type 1 (curved) Balmer decrements are observed only in three sub-luminous sources viewed edge-on, so we speculate that these are actually reddened type 2 decrements. About 20% of the objects present type 3 Balmer decrements (bumpy), which cannot be reproduced with current models.Comment: 29 pages, accepted by A&

    X-Shooter spectroscopy of young stellar objects: V - Slow winds in T Tauri stars

    Full text link
    Disks around T Tauri stars are known to lose mass, as best shown by the profiles of forbidden emission lines of low ionization species. At least two separate kinematic components have been identified, one characterised by velocity shifts of tens to hundreds km/s (HVC) and one with much lower velocity of few km/s (LVC). The HVC are convincingly associated to the emission of jets, but the origin of the LVC is still unknown. In this paper we analyze the forbidden line spectrum of a sample of 44 mostly low mass young stars in Lupus and σ\sigma-Ori observed with the X-Shooter ESO spectrometer. We detect forbidden line emission of [OI], [OII], [SII], [NI], and [NII], and characterize the line profiles as LVC, blue-shifted HVC and red-shifted HVC. We focus our study on the LVC. We show that there is a good correlation between line luminosity and both Lstar_{star} and the accretion luminosity (or the mass-accretion rate) over a large interval of values (Lstar_{star} ∌10−2−1\sim 10^{-2} - 1 L⊙_\odot; Lacc_{acc} ∌10−5−10−1\sim 10^{-5} - 10^{-1} L⊙_\odot; M˙acc\dot M_{acc} ∌10−11−10−7\sim 10^{-11} - 10^{-7} M⊙_\odot/yr). The lines show the presence of a slow wind (Vpeak108V_{peak}10^8 cm−3^{-3}), warm (T∌5000−10000\sim 5000-10000 K), mostly neutral. We estimate the mass of the emitting gas and provide a value for the maximum volume it occupies. Both quantities increase steeply with the stellar mass, from ∌10−12\sim 10^{-12} M⊙_\odot and ∌0.01\sim 0.01 AU3^3 for Mstar_{star}∌0.1\sim 0.1 M⊙_\odot, to ∌3×10−10\sim 3 \times 10^{-10} M⊙_\odot and ∌1\sim 1 AU3^3 for Mstar_{star}∌1\sim 1 M⊙_\odot, respectively. These results provide quite stringent constraints to wind models in low mass young stars, that need to be explored further
    • 

    corecore