20 research outputs found

    Learning Qualitative Constraint Networks

    Get PDF
    Temporal and spatial reasoning is a fundamental task in artificial intelligence and its related areas including scheduling, planning and Geographic Information Systems (GIS). In these applications, we often deal with incomplete and qualitative information. In this regard, the symbolic representation of time and space using Qualitative Constraint Networks (QCNs) is therefore substantial. We propose a new algorithm for learning a QCN from a non expert. The learning process includes different cases where querying the user is an essential task. Here, membership queries are asked in order to elicit temporal or spatial relationships between pairs of temporal or spatial entities. During this acquisition process, constraint propagation through Path Consistency (PC) is performed in order to reduce the number of membership queries needed to reach the target QCN. We use the learning theory machinery to prove some limits on learning path consistent QCNs from queries. The time performances of our algorithm have been experimentally evaluated using different scenarios

    Analysis of rule-based and shallow statistical models for COVID-19 cough detection for a preliminary diagnosis

    Get PDF
    Coronavirus pandemic that has spread all over the world, is one of its kind in the recent past, that has mobilized researchers in areas such as (not limited to) pre-screening solutions, contact tracing, vaccine developments, and crowd estimation. Pre-screening using symptoms identification, cough classification, and contact tracing mobile applications gained significant popularity during the initial outbreak of the pandemic. Audio recordings of coughing individuals are one of the sources that can help in the pre-screening of COVID-19 patients. This research focuses on quantitative analysis of covid cough classification using audio recordings of coughing individuals. For analysis, we used three different publicly available datasets i.e., COUGHVID, NoCoCoDa, and a self-collected dataset through a web application. We observed that wet cough has more correlation with covid cough as opposed to dry cough. However, the classification model trained with wet and dry coughs, both, has similar test performance as that of the model trained with wet cough samples only. We conclude that audio-signal recordings of coughing individuals have the potential as a pre-screening test for COVID-19

    Towards Sweetness Classification of Orange Cultivars Using Short‑Wave NIR Spectroscopy

    Get PDF
    The global orange industry constantly faces new technical challenges to meet consumer demands for quality fruits. Instead of traditional subjective fruit quality assessment methods, the interest in the horticulture industry has increased in objective, quantitative, and non-destructive assessment methods. Oranges have a thick peel which makes their non-destructive quality assessment challenging. This paper evaluates the potential of short-wave NIR spectroscopy and direct sweetness classification approach for Pakistani cultivars of orange, i.e., Red-Blood, Mosambi, and Succari. The correlation between quality indices, i.e., Brix, titratable acidity (TA), Brix: TA and BrimA (Brix minus acids), sensory assessment of the fruit, and short-wave NIR spectra, is analysed. Mix cultivar oranges are classified as sweet, mixed, and acidic based on short-wave NIR spectra. Short-wave NIR spectral data were obtained using the industry standard F-750 fruit quality meter (310–1100 nm). Reference Brix and TA measurements were taken using standard destructive testing methods. Reference taste labels i.e., sweet, mix, and acidic, were acquired through sensory evaluation of samples. For indirect fruit classification, partial least squares regression models were developed for Brix, TA, Brix: TA, and BrimA estimation with a correlation coefficient of 0.57, 0.73, 0.66, and 0.55, respectively, on independent test data. The ensemble classifier achieved 81.03% accuracy for three classes (sweet, mixed, and acidic) classification on independent test data for direct fruit classification. A good correlation between NIR spectra and sensory assessment is observed as compared to quality indices. A direct classification approach is more suitable for a machine-learning-based orange sweetness classification using NIR spectroscopy than the estimation of quality indices
    corecore