17 research outputs found

    Tunable magnetic exchange interactions in manganese-doped inverted core/shell ZnSe/CdSe nanocrystals

    Full text link
    Magnetic doping of semiconductor nanostructures is actively pursued for applications in magnetic memory and spin-based electronics. Central to these efforts is a drive to control the interaction strength between carriers (electrons and holes) and the embedded magnetic atoms. In this respect, colloidal nanocrystal heterostructures provide great flexibility via growth-controlled `engineering' of electron and hole wavefunctions within individual nanocrystals. Here we demonstrate a widely tunable magnetic sp-d exchange interaction between electron-hole excitations (excitons) and paramagnetic manganese ions using `inverted' core-shell nanocrystals composed of Mn-doped ZnSe cores overcoated with undoped shells of narrower-gap CdSe. Magnetic circular dichroism studies reveal giant Zeeman spin splittings of the band-edge exciton that, surprisingly, are tunable in both magnitude and sign. Effective exciton g-factors are controllably tuned from -200 to +30 solely by increasing the CdSe shell thickness, demonstrating that strong quantum confinement and wavefunction engineering in heterostructured nanocrystal materials can be utilized to manipulate carrier-Mn wavefunction overlap and the sp-d exchange parameters themselves.Comment: To appear in Nature Materials; 18 pages, 4 figures + Supp. Inf

    Electronic States and Light Absorption in a Cylindrical Quantum Dot Having Thin Falciform Cross Section

    Get PDF
    Energy level structure and direct light absorption in a cylindrical quantum dot (CQD), having thin falciform cross section, are studied within the framework of the adiabatic approximation. An analytical expression for the energy spectrum of the particle is obtained. For the one-dimensional “fast” subsystem, an oscillatory dependence of the wave function amplitude on the cross section parameters is revealed. For treatment of the “slow” subsystem, parabolic and modified Pöschl-Teller effective potentials are used. It is shown that the low-energy levels of the spectrum are equidistant. In the strong quantization regime, the absorption coefficient and edge frequencies are calculated. Selection rules for the corresponding quantum transitions are obtained

    Direct Interband Light Absorption in Strongly Prolated Ellipsoidal Quantum Dots’ Ensemble

    Get PDF
    Within the framework of adiabatic approximation, the energy levels and direct interband light absorption in a strongly prolated ellipsoidal quantum dot are studied. Analytical expressions for the particle energy spectrum and absorption threshold frequencies in three regimes of quantization are obtained. Selection rules for quantum transitions are revealed. Absorption edge and absorption coefficient for three regimes of size quantization (SQ) are also considered. To facilitate the comparison of obtained results with the probable experimental data, size dispersion distribution of growing quantum dots by the small semiaxe in the regimes of strong and weak SQ by two experimentally realizing distribution functions have been taken into account. Distribution functions of Lifshits–Slezov and Gaussian have been considered

    The effect of Auger heating on intraband carrier relaxation in semiconductor quantumrods

    Full text link
    The rate at which excited charge carriers relax to their equilibrium state affects many aspects of the performance of nanoscale devices, including switching speed, carrier mobility and luminescent efficiency. Better understanding of the processes that govern carrier relaxation therefore has important technological implications. A significant increase in carrier-carrier interactions caused by strong spatial confinement of electronic excitations in semiconductor nanostructures leads to a considerable enhancement of Auger effects, which can further result in unusual, Auger-process-controlled recombination and energy-relaxation regimes. Here, we report the first experimental observation of efficient Auger heating in CdSe quantum rods at high pump intensities, leading to a strong reduction of carrier cooling rates. In this regime, the carrier temperature is determined by the balance between energy outflow through phonon emission and energy inflow because of Auger heating. This equilibrium results in peculiar carrier cooling dynamics that closely correlate with recombination dynamics, an effect never before seen in bulk or nanoscale semiconductors.Comment: 7 pages, 4 figure

    Excitonic Transitions and Off-resonant Optical Limiting in CdS Quantum Dots Stabilized in a Synthetic Glue Matrix

    Get PDF
    Stable films containing CdS quantum dots of mean size 3.4 nm embedded in a solid host matrix are prepared using a room temperature chemical route of synthesis. CdS/synthetic glue nanocomposites are characterized using high resolution transmission electron microscopy, infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. Significant blue shift from the bulk absorption edge is observed in optical absorption as well as photoacoustic spectra indicating strong quantum confinement. The exciton transitions are better resolved in photoacoustic spectroscopy compared to optical absorption spectroscopy. We assign the first four bands observed in photoacoustic spectroscopy to 1se–1sh, 1pe–1ph, 1de–1dhand 2pe–2phtransitions using a non interacting particle model. Nonlinear absorption studies are done using z-scan technique with nanosecond pulses in the off resonant regime. The origin of optical limiting is predominantly two photon absorption mechanism

    Almost always bright

    No full text
    corecore