259 research outputs found

    Lyman Break Galaxies at z~5: Rest-frame UV Spectra II

    Full text link
    We present the results of spectroscopy of Lyman Break Galaxies (LBGs) at z~5 in the J0053+1234 field with the Faint Object Camera and Spectrograph on the Subaru telescope. Among 5 bright candidates with z' < 25.0 mag, 2 objects are confirmed to be at z~5 from their Ly alpha emission and the continuum depression shortward of Ly alpha. The EWs of Ly alpha emission of the 2 LBGs are not so strong to be detected as Ly alpha emitters, and one of them shows strong low-ionized interstellar (LIS) metal absorption lines. Two faint objects with z' \geq 25.0 mag are also confirmed to be at z~5, and their spectra show strong Ly alpha emission in contrast to the bright ones. These results suggest a deficiency of strong Ly alpha emission in bright LBGs at z~5, which has been discussed in our previous paper. Combined with our previous spectra of LBGs at z~5 obtained around the Hubble Deep Field-North (HDF-N), we made a composite spectrum of UV luminous (M_1400 \leq -21.5 mag) LBGs at z~5. The resultant spectrum shows a weak Ly alpha emission and strong LIS absorptions which suggests that the bright LBGs at z~5 have chemically evolved at least to ~0.1 solar metallicity. For a part of our sample in the HDF-N region, we obtained near-to-mid infrared data, which constraint stellar masses of these objects. With the stellar mass and the metallicity estimated from LIS absorptions, the metallicities of the LBGs at z~5 tend to be lower than those of the galaxies with the same stellar mass at z \lesssim 2, although the uncertainty is very large.Comment: 17 pages, 5 figures, accepted for publication in PAS

    Stem cells in dentistry – Part I: Stem cell sources

    Get PDF
    AbstractStem cells can self-renew and produce different cell types, thus providing new strategies to regenerate missing tissues and treat diseases. In the field of dentistry, adult mesenchymal stem/stromal cells (MSCs) have been identified in several oral and maxillofacial tissues, which suggests that the oral tissues are a rich source of stem cells, and oral stem and mucosal cells are expected to provide an ideal source for genetically reprogrammed cells such as induced pluripotent stem (iPS) cells. Furthermore, oral tissues are expected to be not only a source but also a therapeutic target for stem cells, as stem cell and tissue engineering therapies in dentistry continue to attract increasing clinical interest. Part I of this review outlines various types of intra- and extra-oral tissue-derived stem cells with regard to clinical availability and applications in dentistry. Additionally, appropriate sources of stem cells for regenerative dentistry are discussed with regard to differentiation capacity, accessibility and possible immunomodulatory properties

    Discovery of H alpha absorption in the unusual broad absorption line quasar SDSS J083942.11+380526.3

    Full text link
    We discovered an H alpha absorption in a broad H alpha emission line of an unusual broad absorption line quasar, SDSS J083942.11+380526.3 at z=2.318, by near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) on the Subaru telescope. The Presence of non-stellar H alpha absorption is known only in the Seyfert galaxy NGC 4151 to date, thus our discovery is the first case for quasars. The H alpha absorption line is blueshifted by 520 km/s relative to the H alpha emission line, and its redshift almost coincides with those of UV low-ionization metal absorption lines. The width of the H alpha absorption (~ 340 km/s) is similar to those of the UV low-ionization absorption lines. These facts suggest that the H alpha and the low-ionization metal absorption lines are produced by the same low-ionization gas which has a substantial amount of neutral gas. The column density of the neutral hydrogen is estimated to be ~ 10^18 cm^-2 by assuming a gas temperature of 10,000 K from the analysis of the curve of growth. The continuum spectrum is reproduced by a reddened (E(B-V) ~ 0.15 mag for the SMC-like reddening law) composite quasar spectrum. Furthermore, the UV spectrum of SDSS J083942.11+380526.3 shows a remarkable similarity to that of NGC 4151 in its low state, suggesting the physical condition of the absorber in SDSS J083942.11+380526.3 is similar to that of NGC 4151 in the low state. As proposed for NGC 4151, SDSS J083942.11+380526.3 may be also seen through the close direction of the surface of the obscuring torus.Comment: Accepted for publication in Ap

    Lyman Break Galaxies at z∼5z\sim5: Rest-Frame UV Spectra

    Full text link
    We report initial results for spectroscopic observations of candidates of Lyman Break Galaxies (LBGs) at z∼5z\sim5 in a region centered on the Hubble Deep Field-North by using the Faint Object Camera and Spectrograph attached to the Subaru Telescope. Eight objects with IC≤25.0I_C\leq25.0 mag, including one AGN, are confirmed to be at 4.5<z<5.24.5<z<5.2. The rest-frame UV spectra of seven LBGs commonly show no or weak Lyalpha emission line (rest-frame equivalent width of 0-10\AA) and relatively strong low-ionization interstellar metal absorption lines of SiII λ\lambda1260, OI+SiII λ\lambda1303, and CII λ\lambda1334 (mean rest-frame equivalent widths of them are −1.2∼−5.1-1.2 \sim -5.1 \AA). These properties are significantly different from those of the mean rest-frame UV spectrum of LBGs at z∼3z\sim3, but are quite similar to those of subgroups of LBGs at z∼3z\sim3 with no or weak Lyalpha emission. The weakness of Lyalpha emission and strong low-ionization interstellar metal absorption lines may indicate that these LBGs at z∼5z\sim5 are chemically evolved to some degree and have a dusty environment. Since the fraction of such LBGs at z∼5z\sim5 in our sample is larger than that at z∼3z\sim3, we may witness some sign of evolution of LBGs from z∼5z\sim5 to z∼3z\sim3, though the present sample size is very small. It is also possible, however, that the brighter LBGs tend to show no or weak Lyalpha emission, because our spectroscopic sample is bright (brighter than L∗L^{\ast}) among LBGs at z∼5z\sim5. More observations are required to establish spectroscopic nature of LBGs at z∼5z\sim5.Comment: 16 pages, 3 figures, accepted by Ap

    Dental Mesenchymal Stem Cells Encapsulated in Alginate Hydrogel Co-Delivery Microencapsulation System for Cartilage Regeneration

    Get PDF
    Dental-derived MSCs are promising candidates for cartilage regeneration, with high chondrogenic differentiation capacity. This property contributes to making dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating Periodontal Ligament Stem Cells (PDLSCs) or Gingival Mesenchymal Stem Cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs, GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSC) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by toluidine blue and safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (
    • …
    corecore