7 research outputs found

    Housekeeping with multiple autonomous robots: representation, reasoning, and execution

    Get PDF
    We consider a housekeeping domain with static or movable objects, where the goal is for multiple autonomous robots to tidy a house collaboratively in a given amount of time. This domain is challenging in the following ways: commonsense knowledge (e.g., expected locations of objects in the house) is required for intelligent behavior of robots; geometric constraints are required to find feasible plans (e.g., to avoid collisions); in case of plan failure while execution (e.g., due to a collision with movable objects whose presence and location are not known in advance or due to heavy objects that cannot be lifted by a single robot), recovery is required depending on the cause of failure; and collaboration of robots is required to complete some tasks (e.g., carrying heavy objects). We introduce a formal planning, execution and monitoring framework to address the challenges of this domain, by embedding knowledge representation and automated reasoning in each level of decision-making (that consists of discrete task planning, continuous motion planning, and plan execution), in such a way as to tightly integrate these levels. At the high-level, we represent not only actions and change but also commonsense knowledge in a logicbased formalism. Geometric reasoning is lifted to the high-level by embedding motion planning in the domain description. Then a discrete plan is computed for each robot using an automated reasoner. At the mid-level, if a continuous trajectory cannot be computed by a motion planner because the discrete plan is not feasible at the continuous-level, then a different plan is computed by the automated reasoner subject to some (temporal) conditions represented as formulas. At the low-level, if the plan execution fails, then a new continuous trajectory is computed by a motion planner at the mid-level or a new discrete plan is computed using an automated reasoner at the high-level. We illustrate the applicability of this formal framework with a simulation of a housekeeping domain

    Çözüm kümesi programlama kullanarak ortaklaşa ev içi hizmet robotiği (Collaborative housekeeping robotics using answer set programming)

    No full text
    Answer Set Programming (ASP) is a knowledge representation and reasoning paradigm with high-level expressive logic-based formalism, and efficient solvers; it is applied to solve hard problems in various domains, such as, systems biology, wire routing, space shuttle control. In this paper, we present an application of ASP to housekeeping robotics, by showing how the following problems are addressed using computational methods/tools of ASP: 1) embedding commonsense knowledge automatically extracted from the commonsense knowledge base ConceptNet, into high-level representation, 2) embedding (continuous) geometric reasoning and temporal reasoning about durations of actions, into (discrete) high-level reasoning. We illustrate the applicability of ASP on several housekeeping robotics problems

    Housekeeping with multiple autonomous robots: representation, reasoning and execution

    No full text
    We formalize actions and change in a housekeeping domain with multiple cleaning robots, and commonsense knowledge about this domain, in the action language C+. Geometric reasoning is lifted to high-level representation by embedding motion planning in the domain description using external predicates. With such a formalization of the domain, a plan can be computed using the causal reasoner CCALC for each robot to tidy some part of the house. We introduce a planning and monitoring algorithm for safe execution of these plans, so that it can recover from plan failures due to collision with movable objects whose presence and location are not known in advance or due to heavy objects that cannot be lifted alone. We illustrate the applicability of this algorithm with a simulation of a housekeeping domain

    Housekeeping with multiple autonomous robots: representation, reasoning and execution

    No full text
    We formalize actions and change in a housekeeping domain with multiple cleaning robots, and commonsense knowledge about this domain, in the action language C+. Geometric reasoning is lifted to high-level representation by embedding motion planning in the domain description using external predicates. With such a formalization of the domain, a plan can be computed using the causal reasoner CCALC for each robot to tidy some part of the house. We introduce a planning and monitoring algorithm for safe execution of these plans, so that it can recover from plan failures due to collision with movable objects whose presence and location are not known in advance or due to heavy objects that cannot be lifted alone. We illustrate the applicability of this algorithm with a simulation of a housekeeping domain

    Answer set programming for collaborative housekeeping robotics: representation, reasoning, and execution

    No full text
    Answer set programming (ASP) is a knowledge representation and reasoning paradigm with high-level expressive logic-based formalism, and efficient solvers; it is applied to solve hard problems in various domains, such as systems biology, wire routing, and space shuttle control. In this paper, we present an application of ASP to housekeeping robotics. We show how the following problems are addressed using computational methods/tools of ASP: (1) embedding commonsense knowledge automatically extracted from the commonsense knowledge base ConceptNet, into high-level representation, and (2) embedding (continuous) geometric reasoning and temporal reasoning about durations of actions, into (discrete) high-level reasoning. We introduce a planning and monitoring algorithm for safe execution of plans, so that robots can recover from plan failures due to collision with movable objects whose presence and location are not known in advance or due to heavy objects that cannot be lifted alone. Some of the recoveries require collaboration of robots. We illustrate the applicability of ASP on several housekeeping robotics problems, and report on the computational efficiency in terms of CPU time and memory
    corecore