81 research outputs found
Frequency-Domain Modeling Techniques for the Scalar Wave Equation : An Introduction
Frequency-domain finite-difference (FDFD) modeling offers several advantages over traditional timedomain
methods when simulating seismic wave propagation, including a convenient formulation within
the context of wavefield inversion and a straight-forward extension for adding complex attenuation mechanisms.
In this short paper we introduce the FDFD method, develop a simple solver for the scalar
Helmholtz problem, and explore some possible approaches for solving large scale seismic modeling problems
in the frequency domain.Massachusetts Institute of Technology. Earth Resources Laborator
Non-Linear Constraints with Application to Self-Potential Source Inversion
We investigate the use of non-linear constraints for geophysical inverse problems, with specific examples applied to source inversion of self-potential data. Typical regularization methods often produce smooth solutions by introducing a quadratic term in the objective function that minimizes the L2 norm of a low-order differential operator applied to the model. In some cases, however, the properties of interest may not vary smoothly. Two alternative constraints are examined that provide inversion stability while allowing for solutions with non-smooth properties. One method, often referred to as âcompactnessâ or âminimum supportâ, seeks to minimize the area (in 2D) or volume (in 3D) occupied by non-zero model parameters. The second method, âtotal variationâ, minimizes an approximation of the L1 norm of the gradient of the model. Both approaches involve a non-linear regularization functional, and must therefore be solved iteratively. We discuss the practical aspects of implementing these regularization methods and compare several examples using self-potential source inversion on a synthetic model. We also apply the compactness constraint for self-potential source inversion using a field data example.Kuwait-MIT Center for Natural Resources and the EnvironmentMassachusetts Institute of Technology. Earth Resources Laborator
Temporal Integration of Seismic Traveltime Tomography
Time-lapse geophysical measurements and seismic imaging methods in particular are powerful techniques
for monitoring changes in reservoir properties. Traditional time-lapse processing methods treat
each dataset as an independent unit and estimate changes in reservoir state through differencing these
separate inversions. We present a general least-squares approach to jointly inverting time-varying property
models through use of spatio-temporal coupling operators. Originally developed within the medical
imaging community, this extension of traditional Tikhonov regularization allows us to constrain the way
in which models vary in time, thereby reducing artifacts observed in traditional time-lapse imaging formulations.
The same methodology can also accommodate changes in experiment geometry as a function
of time thus allowing inversion of incremental or incomplete surveys. In this case, temporal resolution is
traded for improved spatial coverage at individual timesteps. We use seismic traveltime tomography as a
model problem although almost any geophysical inversion task can be posed within this formalism. We
apply the developed time-lapse inversion algorithm to a synthetic crosswell dataset designed to replicate
a CO2 sequestration monitoring experiment
A new mini-triaxial cell for combined high-pressure and high-temperature in situ synchrotron X-ray microtomography experiments up to 400°C and 24â MPa.
A new experimental triaxial cell for in situ synchrotron X-ray micro-computed tomography aimed at imaging small samples of (6â
mm Ă 19â
mm) at high temperatures (up to 400°C) and pressures (up to 24â
MPa confining) is presented. The system has flow-through capabilities, independent axial and radial pressure control, and has been developed and tested at the 8.3.2. beamline at the Advanced Light Source. The characteristics of this new experimental rig are described, along with the challenges, mainly concerning the combination of X-ray transparency with vessel strength at high temperature, and solutions found during the development stage. An experiment involving oil shale pyrolysis under subsurface conditions, highlighting the importance of a device able to operate in this pressure and temperature range, is also introduced. The availability of this cell enables an unprecedented range of experiments in the Earth Sciences, with a special focus on subsurface geothermal processes
Applying Compactness Constraints to Differential Traveltime Tomography
Tomographic imaging problems are typically ill-posed and often require the use of regularization techniques
to guarantee a stable solution. Minimization of a weighted norm of model length is one commonly
used secondary constraint. Tikhonov methods exploit low-order differential operators to select for solutions
that are small, flat, or smooth in one or more dimensions. This class of regularizing functionals
may not always be appropriate, particularly in cases where the anomaly being imaged is generated by
a non-smooth spatial process. Timelapse imaging of flow-induced velocity anomalies is one such case;
flow features are often characterized by spatial compactness or connectivity. By performing inversions
on differenced arrival time data, the properties of the timelapse feature can be directly constrained. We
develop a differential traveltime tomography algorithm which selects for compact solutions i.e. models
with a minimum area of support, through application of model-space iteratively reweighted least squares.
Our technique is an adaptation of minimum support regularization methods previously explored within
the potential theory community. We compare our inversion algorithm to the results obtained by traditional
Tikhonov regularization for two simple synthetic models; one including several sharp localized
anomalies and a second with smoother features. We use a more complicated synthetic test case based on
multiphase flow results to illustrate the efficacy of compactness constraints for contaminant infiltration
imaging. We conclude by applying the algorithm to a CO[subscript 2] sequestration monitoring dataset acquired
at the Frio pilot site. We observe that in cases where the assumption of a localized anomaly is correct,
the addition of compactness constraints improves image quality by reducing tomographic artifacts and
spatial smearing of target features.Massachusetts Institute of Technology. Earth Resources Laborator
The role of stress and fluid saturation on the acoustic response of fractured rock
Standard rock physics models are formulated to describe the behavior of porous sedimentary reservoirs, with clean sandstones being the archetypal system; however, many situations demand geophysical monitoring of rocks with significantly different structures, such as low porosity, fractured reservoirs. Conventional models also suggest that these âstiffâ reservoirs can be challenging to monitor seismically due to small fluid substitution effects, but the presence of fractures leads to stress dependence which may be leveraged for remote monitoring purposes. Using samples from the Duperow Formation (dolostone) obtained from the Danielson test well in Kevin Dome, MT, we conducted ultrasonic and multi-scale structural (profilometry, synchrotron micro-tomography, pressure sensitive film) measurements on naturally fractured core in order to characterize the effects of fluid substitution and effective stress on the acoustic response of fractured reservoir rock with a focus in particular on the textural and seismic characteristics of natural fractures. We find that changes in effective stress can yield changes in velocity of up to 20% and changes in attenuation up to 200%. Measured fluid substitution effects are resolvable, but stress effects dominate. These measurements provide insight into the physical processes controlling acoustic response of fractured rocks in general and can also be used to inform monitoring efforts in fractured reservoirs
Applying Compactness Constraints to Seismic Traveltime Tomography
Tomographic imaging problems are typically ill-posed and often require the use of regularization techniques to guarantee a stable solution. Minimization of a weighted norm of model length is one commonly used secondary constraint. Tikhonov methods exploit low-order differential operators to select for solutions that are small, flat, or smooth in one or more dimensions. This class of regularizing functionals may not always be appropriate, particularly in cases where the anomaly being imaged is generated by a non-smooth spatial process. Timelapse imaging of flow-induced seismic velocity anomalies is one such case; flow features are often characterized by spatial compactness or connectivity. We develop a traveltime tomography algorithm which selects for compact solutions through application of model-space iteratively reweighted least squares. Our technique is an adaptation of minimum support regularization methods previously developed within the potential theory community. We emphasize the application of compactness constraints to timelapse datasets differenced in the data domain, a process which allows recovery of compact perturbations in model properties. We test our inversion algorithm on a simple synthetic dataset generated using a velocity model with several localized velocity anomalies. We then demonstrate the efficacy of the algorithm on a CO2 sequestration monitoring dataset acquired at the Frio pilot site. In both cases, the addition of compactness constraints improves image quality by reducing spatial smearing due to limited angular aperture in the acquisition geometry.Toksoz, M. NafiMassachusetts Institute of Technology. Earth Resources Laborator
Computation of 3D Frequency-Domain Waveform Kernals for c(x,y,z) Media
Seismic tomography, as typically practiced on both the exploration, crustal, and global scales, considers only the arrival times of selected sets of phases and relies primarily on WKBJ theory during inversion. Since the mid 1980âs, researchers have explored, largely on a theoretical level, the possibility of inverting the entire seismic record. Due to the ongoing advances in CPU performance, full waveform inversion is finally becoming feasible on select problems with promising results emerging from frequency-domain methods. However, frequency-domain techniques using sparse direct solvers are currently constrained by memory limitations in 3D where they exhibit a O(n4) worst-case bound on memory usage. We sidestep this limitation by using a hybrid approach, calculating frequency domain Greenâs functions for the scalar wave equation by driving a high-order, time-domain, finite-difference (FDTD) code to steady state using a periodic source. The frequency-domain response is extracted using the phase sensitive detection (PSD) method recently developed by Nihei and Li (2006). The resulting algorithm has an O(n3) memory footprint and is amenable to parallelization in the space, shot, or frequency domains. We demonstrate this approach by generating waveform inversion kernels for fully c(x,y,z) models. Our test examples include a realistic VSP experiment using the geometry and velocity models obtained from a site in Western Wyoming, and a deep crustal reflection/refraction profile based on the LARSE II geometry and the SCEC community velocity model. We believe that our 3D solutions to the scalar Helmholtz equation, for models with upwards of 100 million degrees of freedom, are the largest examples documented in the open geophysical literature. Such results suggest that iterative 3D waveform inversion is an achievable goal in the near future.Shell GameChangerMassachusetts Institute of Technology. Earth Resources Laborator
The potential of distributed acoustic sensing (DAS) in teleseismic studies: insights from the Goldstone experiment
Distributed acoustic sensing (DAS) is a recently developed technique that has demonstrated its utility in the oil and gas industry. Here we demonstrate the potential of DAS in teleseismic studies using the Goldstone OpticaL Fiber Seismic experiment in Goldstone, California. By analyzing teleseismic waveforms from the 10 January 2018 M7.5 Honduras earthquake recorded on ~5,000 DAS channels and the nearby broadband station GSC, we first compute receiver functions for DAS channels using the verticalâcomponent GSC velocity as an approximation for the incident source wavelet. The Moho Pâtoâs conversions are clearly visible on DAS receiver functions. We then derive meterâscale arrival time measurements along the entire 20âkmâlong array. We are also able to measure pathâaveraged Rayleigh wave group velocity and local Rayleigh wave phase velocity. The latter, however, has large uncertainties. Our study suggests that DAS will likely play an important role in many fields of passive seismology in the near future
- âŠ