9,156 research outputs found
Joint Spectral Radius and Path-Complete Graph Lyapunov Functions
We introduce the framework of path-complete graph Lyapunov functions for
approximation of the joint spectral radius. The approach is based on the
analysis of the underlying switched system via inequalities imposed among
multiple Lyapunov functions associated to a labeled directed graph. Inspired by
concepts in automata theory and symbolic dynamics, we define a class of graphs
called path-complete graphs, and show that any such graph gives rise to a
method for proving stability of the switched system. This enables us to derive
several asymptotically tight hierarchies of semidefinite programming
relaxations that unify and generalize many existing techniques such as common
quadratic, common sum of squares, and maximum/minimum-of-quadratics Lyapunov
functions. We compare the quality of approximation obtained by certain classes
of path-complete graphs including a family of dual graphs and all path-complete
graphs with two nodes on an alphabet of two matrices. We provide approximation
guarantees for several families of path-complete graphs, such as the De Bruijn
graphs, establishing as a byproduct a constructive converse Lyapunov theorem
for maximum/minimum-of-quadratics Lyapunov functions.Comment: To appear in SIAM Journal on Control and Optimization. Version 2 has
gone through two major rounds of revision. In particular, a section on the
performance of our algorithm on application-motivated problems has been added
and a more comprehensive literature review is presente
Semi-definite programming and functional inequalities for Distributed Parameter Systems
We study one-dimensional integral inequalities, with quadratic integrands, on
bounded domains. Conditions for these inequalities to hold are formulated in
terms of function matrix inequalities which must hold in the domain of
integration. For the case of polynomial function matrices, sufficient
conditions for positivity of the matrix inequality and, therefore, for the
integral inequalities are cast as semi-definite programs. The inequalities are
used to study stability of linear partial differential equations.Comment: 8 pages, 5 figure
- …