84 research outputs found
Integrative omics to understand human immune variation
On a daily basis, millions of microorganisms enter our bodies and interact with us. As such, we have evolved a series of defense mechanisms that seek and destroy unfriendly microorganisms, known as our immune system. If our immune system is not well-calibrated and responds too slowly to microorganisms, we become susceptible to infections; on the other hand, if it responds too strongly it can damage our own body. Each and everyone of us has a slight variation in the calibration of our immune system, which is dependent on our genetics, lifestyle and environment; yet it is still not clear what is the role of this variation in health and disease. Therefore, in this thesis we aimed to expand our understanding of the variation of the immune system by integrating multiple layers of biological information. In the first section of this thesis, we focused on exploring the main drivers of such variation by looking at the levels of circulating immune cells and their responses after they encounter certain microorganisms. We were able to predict certain immune responses in healthy individuals using solely genetics. In the second section, we explored the role of gene expression levels of immune cells to understand their role in health and disease. We first evaluated the impact of genetics on gene expression in immune cells by developing a new computational approach. Last, we characterized the changes of gene expression over time after their stimulation with disease-relevant molecules using patient derived immune cells
ER stress and UPR activation in glioblastoma:identification of a noncanonical PERK mechanism regulating GBM stem cells through SOX2 modulation
Patients with aggressive brain tumors, named glioblastoma multiforme (GBM), have a poor prognoses. Here we explored if the ER stress/unfolded protein response (UPR) is involved in the pathophysiology of GBM and may provide novel therapeutic targets. Immunohistochemical analyses of a tissue microarray containing primary GBM specimens showed strong variability in expression of the UPR markers GRP78/BiP, XBP1, and ATF4. Interestingly, high ATF4 expression was associated with poor overall survival suggesting involvement of PERK signaling in GBM progression. In vitro experiments using patient-derived neurospheres, enriched for GBM stem cells (GSCs), showed high sensitivity for the ER stressor thapsigargin (Tg) mainly via PERK signaling. In contrast, neurospheres-derived differentiated GBM cells were less sensitive likely due to lower UPR activity as indicated by comparative transcriptional profiling. Tg and Tunicamycin strongly reduced neurosphere forming ability of GSCs that was linked with potent PERK-dependent downregulation of SOX2 protein. Interestingly, SOX2 downregulation occurred directly via PERK, not requiring downstream activation of the PERK-UPR pathway. Moreover, PERK inactivation resulted in aberrant serum-induced differentiation of GBM neurospheres accompanied by persistent SOX2 expression, delayed upregulation of GFAP and reduced cell adherence. In conclusion, we provide evidence that PERK signaling contributes to the prognoses of primary GBM patients and identified PERK as a novel regulator of SOX2 expression and GSC differentiation. The role of PERK appeared to be pleiotropic involving UPR-dependent, as well as novel identified noncanonical mechanisms regulating SOX2. ER stress and PERK modulation appear to provide promising therapeutic targets for therapy in GBM
Systematic Prioritization of Candidate Genes in Disease Loci Identifies TRAFD1 as a Master Regulator of IFN gamma Signaling in Celiac Disease
Celiac disease (CeD) is a complex T cell-mediated enteropathy induced by gluten. Although genome-wide association studies have identified numerous genomic regions associated with CeD, it is difficult to accurately pinpoint which genes in these loci are most likely to cause CeD. We used four different in silico approaches-Mendelian randomization inverse variance weighting, COLOC, LD overlap, and DEPICT-to integrate information gathered from a large transcriptomics dataset. This identified 118 prioritized genes across 50 CeD-associated regions. Co-expression and pathway analysis of these genes indicated an association with adaptive and innate cytokine signaling and T cell activation pathways. Fifty-one of these genes are targets of known drug compounds or likely druggable genes, suggesting that our methods can be used to pinpoint potential therapeutic targets. In addition, we detected 172 gene combinations that were affected by our CeD-prioritized genes in trans. Notably, 41 of these trans-mediated genes appear to be under control of one master regulator, TRAF-type zinc finger domain containing 1 (TRAFD1), and were found to be involved in interferon (IFN)gamma signaling and MHC I antigen processing/presentation. Finally, we performed in vitro experiments in a human monocytic cell line that validated the role of TRAFD1 as an immune regulator acting in trans. Our strategy confirmed the role of adaptive immunity in CeD and revealed a genetic link between CeD and IFN gamma signaling as well as with MHC I antigen processing, both major players of immune activation and CeD pathogenesis
Temporal and Microspatial Heterogeneity in Transmission Dynamics of Coendemic Plasmodium vivax and Plasmodium falciparum in Two Rural Cohort Populations in the Peruvian Amazon.
BACKGROUND: Malaria is highly heterogeneous: its changing malaria microepidemiology needs to be addressed to support malaria elimination efforts at the regional level. METHODS: A 3-year, population-based cohort study in 2 settings in the Peruvian Amazon (Lupuna, Cahuide) followed participants by passive and active case detection from January 2013 to December 2015. Incidence and prevalence rates were estimated using microscopy and polymerase chain reaction (PCR). RESULTS: Lupuna registered 1828 infections (1708 Plasmodium vivax, 120 Plasmodium falciparum; incidence was 80.7 infections/100 person-years (95% confidence interval [CI] , 77.1-84.5). Cahuide detected 1046 infections (1024 P vivax, 20 P falciparum, 2 mixed); incidence was 40.2 infections/100 person-years (95% CI, 37.9-42.7). Recurrent P vivax infections predominated onwards from 2013. According to PCR data, submicroscopic predominated over microscopic infections, especially in periods of low transmission. The integration of parasitological, entomological, and environmental observations evidenced an intense and seasonal transmission resilient to standard control measures in Lupuna and a persistent residual transmission after severe outbreaks were intensively handled in Cahuide. CONCLUSIONS: In 2 exemplars of complex local malaria transmission, standard control strategies failed to eliminate submicroscopic and hypnozoite reservoirs, enabling persistent transmission
Seasonal and Nonseasonal Longitudinal Variation of Immune Function
Different components of the immune response show large variability between individuals, but they also vary within the same individual because of host and environmental factors. In this study, we report an extensive analysis of the immune characteristics of 56 individuals over four timepoints in 1 single year as part of the Human Functional Genomics Project. We characterized 102 cell subsets using flow cytometry; quantified production of eight cytokines and two chemokines in response to 20 metabolic, bacterial, fungal, and viral stimuli; and measured circulating markers of inflammation. Taking advantage of the longitudinal sampling, both seasonal and nonseasonal sources of variability were studied. The circulating markers of inflammation IL-18, IL-18 binding protein, and resistin displayed clear seasonal variability, whereas the strongest effect was observed for alpha-1 antitrypsin. Cytokine production capacity also showed strong seasonal changes, especially after stimulation with the influenza virus, Borrelia burgdorferi, and Escherichia coli. Furthermore, we observed moderate seasonality effects on immune cell counts, especially in several CD4(+)/CD8(+) T cell subpopulations. Age of the volunteers was an important factor influencing IFN-gamma and IL-22 production, which matched the strong impact of age on several T cell subsets. Finally, on average, genetics accounted for almost 50% of the interindividual variance not already explained by age, sex, and body mass index, although this varies strongly for different parameters. In conclusion, seasonality is an important environmental factor that influences immune responses, in addition to specific genetic and nongenetic host factors, and this may well explain the seasonal variation in the incidence and severity of immune-mediated diseases
Differential Effects of Environmental and Genetic Factors on T and B Cell Immune Traits
Effective immunity requires a complex network of cellular and humoral components that interact with each other and are influenced by different environmental and host factors. We used a systems biology approach to comprehensively assess the impact of environmental and genetic factors on immune cell populations in peripheral blood, including associations with immunoglobulin concentrations, from ∼500 healthy volunteers from the Human Functional Genomics Project. Genetic heritability estimation showed that variations in T cell numbers are more strongly driven by genetic factors, while B cell counts are more environmentally influenced. Quantitative trait loci (QTL) mapping identified eight independent genomic loci associated with leukocyte count variation, including four associations with T and B cell subtypes. The QTLs identified were enriched among genome-wide association study (GWAS) SNPs reported to increase susceptibility to immune-mediated diseases. Our systems approach provides insights into cellular and humoral immune trait variability in humans
DNA methylation in childhood asthma : an epigenome-wide meta-analysis
Background DNA methylation profiles associated with childhood asthma might provide novel insights into disease pathogenesis. We did an epigenome-wide association study to assess methylation profiles associated with childhood asthma. Methods We did a large-scale epigenome-wide association study (EWAS) within the Mechanisms of the Development of ALLergy (MeDALL) project. We examined epigenome-wide methylation using Illumina Infinium Human Methylation450 BeadChips (450K) in whole blood in 207 children with asthma and 610 controls at age 4-5 years, and 185 children with asthma and 546 controls at age 8 years using a cross-sectional case-control design. After identification of differentially methylated CpG sites in the discovery analysis, we did a validation study in children (4-16 years; 247 cases and 2949 controls) from six additional European cohorts and meta-analysed the results. We next investigated whether replicated CpG sites in cord blood predict later asthma in 1316 children. We subsequently investigated cell-type-specific methylation of the identified CpG sites in eosinophils and respiratory epithelial cells and their related gene-expression signatures. We studied cell-type specificity of the asthma association of the replicated CpG sites in 455 respiratory epithelial cell samples, collected by nasal brushing of 16-year-old children as well as in DNA isolated from blood eosinophils (16 with asthma, eight controls [age 2-56 years]) and compared this with whole-blood DNA samples of 74 individuals with asthma and 93 controls (age 1-79 years). Whole-blood transcriptional profiles associated with replicated CpG sites were annotated using RNA-seq data of subsets of peripheral blood mononuclear cells sorted by fluorescence-activated cell sorting. Findings 27 methylated CpG sites were identified in the discovery analysis. 14 of these CpG sites were replicated and passed genome-wide significance (p Interpretation Reduced whole-blood DNA methylation at 14 CpG sites acquired after birth was strongly associated with childhood asthma. These CpG sites and their associated transcriptional profiles indicate activation of eosinophils and cytotoxic T cells in childhood asthma. Our findings merit further investigations of the role of epigenetics in a clinical context.Peer reviewe
Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study
Summary
Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally.
Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies
have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of
the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income
countries globally, and identified factors associated with mortality.
Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to
hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis,
exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a
minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical
status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary
intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause,
in-hospital mortality for all conditions combined and each condition individually, stratified by country income status.
We did a complete case analysis.
Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital
diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal
malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome
countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male.
Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3).
Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income
countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups).
Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome
countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries;
p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients
combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11],
p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20
[1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention
(ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety
checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed
(ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of
parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65
[0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality.
Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome,
middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will
be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger
than 5 years by 2030
SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis.
Validation of multi-gene biomarkers for clinical outcomes is one of the most important issues for cancer prognosis. An important source of information for virtual validation is the high number of available cancer datasets. Nevertheless, assessing the prognostic performance of a gene expression signature along datasets is a difficult task for Biologists and Physicians and also time-consuming for Statisticians and Bioinformaticians. Therefore, to facilitate performance comparisons and validations of survival biomarkers for cancer outcomes, we developed SurvExpress, a cancer-wide gene expression database with clinical outcomes and a web-based tool that provides survival analysis and risk assessment of cancer datasets. The main input of SurvExpress is only the biomarker gene list. We generated a cancer database collecting more than 20,000 samples and 130 datasets with censored clinical information covering tumors over 20 tissues. We implemented a web interface to perform biomarker validation and comparisons in this database, where a multivariate survival analysis can be accomplished in about one minute. We show the utility and simplicity of SurvExpress in two biomarker applications for breast and lung cancer. Compared to other tools, SurvExpress is the largest, most versatile, and quickest free tool available. SurvExpress web can be accessed in http://bioinformatica.mty.itesm.mx/SurvExpress (a tutorial is included). The website was implemented in JSP, JavaScript, MySQL, and R
Additional file 7 of A systematic review and functional bioinformatics analysis of genes associated with Crohn’s disease identify more than 120 related genes
Additional file 7: Table S4. Mutations of associated to genes not annotated in other databases
- …