84 research outputs found
Prediction of first test day milk yield using historical records in dairy cows
The transition between two lactations remains one of the most critical periods during the productive life of dairy cows. In this study, we aimed to develop a model that predicts the milk yield of dairy cows from test day milk yield data collected in the previous lactation. In the past, data routinely collected in the context of herd improvement programmes on dairy farms have been used to provide insights in the health status of animals or for genetic evaluations. Typically, only data from the current lactation is used, comparing expected (i.e., unperturbed) with realised milk yields. This approach cannot be used to monitor the transition period due to the lack of unperturbed milk yields at the start of a lactation. For multiparous cows, an opportunity lies in the use of data from the previous lactation to predict the expected production of the next one. We developed a methodology to predict the first test day milk yield after calving using information from the previous lactation. To this end, three random forest models (nextMILKFULL, nextMILKPH, and nextMILKP) were trained with three different feature sets to forecast the milk yield on the first test day of the next lactation. To evaluate the added value of using a machine-learning approach against simple models based on contemporary animals or production in the previous lactation, we compared the nextMILK models with four benchmark models. The nextMILK models had an RMSE ranging from 6.08 to 6.24Â kg of milk. In conclusion, the nextMILK models had a better prediction performance compared to the benchmark models. Application-wise, the proposed methodology could be part of a monitoring tool tailored towards the transition period. Future research should focus on validation of the developed methodology within such tool
Milk yield residuals and their link with the metabolic status of dairy cows in the transition period
The transition period is one of the most challenging periods in the lactation cycle of high-yielding dairy cows. It is commonly known to be associated with diminished animal welfare and economic performance of dairy farms. The development of data-driven health monitoring tools based on on-farm available milk yield development has shown potential in identifying health-perturbing events. As proof of principle, we explored the association of these milk yield residuals with the metabolic status of cows during the transition period. Over 2 yr, 117 transition periods from 99 multiparous Holstein-Friesian cows were monitored intensively. Pre- and postpartum dry matter intake was measured and blood samples were taken at regular intervals to determine β-hydroxybutyrate, nonesterified fatty acids (NEFA), insulin, glucose, fructosamine, and IGF1 concentrations. The expected milk yield in the current transition period was predicted with 2 previously developed models (nextMILK and SLMYP) using low-frequency test-day (TD) data and high-frequency milk meter (MM) data from the animal's previous lactation, respectively. The expected milk yield was subtracted from the actual production to calculate the milk yield residuals in the transition period (MRT) for both TD and MM data, yielding MRTTD and MRTMM. When the MRT is negative, the realized milk yield is lower than the predicted milk yield, in contrast, when positive, the realized milk yield exceeded the predicted milk yield. First, blood plasma analytes, dry matter intake, and MRT were compared between clinically diseased and nonclinically diseased transitions. MRTTD and MRTMM, postpartum dry matter intake and IGF1 were significantly lower for clinically diseased versus nonclinically diseased transitions, whereas β-hydroxybutyrate and NEFA concentrations were significantly higher. Next, linear models were used to link the MRTTD and MRTMM of the nonclinically diseased cows with the dry matter intake measurements and blood plasma analytes. After variable selection, a final model was constructed for MRTTD and MRTMM, resulting in an adjusted R2 of 0.47 and 0.73, respectively. While both final models were not identical the retained variables were similar and yielded comparable importance and direction. In summary, the most informative variables in these linear models were the dry matter intake postpartum and the lactation number. Moreover, in both models, lower and thus also more negative MRT were linked with lower dry matter intake and increasing lactation number. In the case of an increasing dry matter intake, MRTTD was positively associated with NEFA concentrations. Furthermore, IGF1, glucose, and insulin explained a significant part of the MRT. Results of the present study suggest that milk yield residuals at the start of a new lactation are indicative of the health and metabolic status of transitioning dairy cows in support of the development of a health monitoring tool. Future field studies including a higher number of cows from multiple herds are needed to validate these findings
Anisotropic light propagation in bovine muscle tissue depends on the initial fiber orientation, muscle type and wavelength
The effects of fiber orientation on vis/NIR light propagation were studied in three bovine muscles: biceps brachii, brachialis and soleus. Broadband light was focused onto the sample and the diffuse reflectance spot was captured using a hyperspectral camera (470-1620 nm), after which rhombuses were fitted to equi-intensity points. In samples with fibers running parallel to the measurement surface, the rhombus’ major axis was oriented
perpendicular to the fiber direction close to the point of illumination. However, at larger distances from the illumination spot, the major axis orientation aligned with the fiber direction. This phenomenon was found to be muscle dependent. Furthermore, the rhombus orientation was highly dependent on the sample positioning underneath the camera, especially when the muscle fibers ran parallel to the measurement surface. The bias parameter, indicating the deviation from a circular shape, was higher for samples with the fibers running parallel to the measurement surface. Moreover, clear effects of wavelength and distance from the illumination point on this parameter were observed. These results show the importance of fiber orientation when considering optical techniques for measurements on anisotropic, fibrous tissues. Moreover, the prediction of muscle fiber orientation seemed feasible, which can be of interest to the meat industry.status: publishe
- …