760 research outputs found
Recommended from our members
High integrity hardware-software codesign
Programmable logic devices (PLDs) are increasing in complexity and speed, and are being used as important components in safety-critical systems. Methods for developing high-integrity software for these systems are well-known, but this is not true for programmable logic. We propose a process for developing a system incorporating software and PLDs, suitable for safety critical systems of the highest levels of integrity. This process incorporates the use of Synchronous Receptive Process Theory as a semantic basis for specifying and proving properties of programs executing on PLDs, and extends the use of SPARK Ada from a programming language for safety-critical systems software to cover the interface between software and programmable logic. We have validated this approach through the specification and development of a substantial safety-critical system incorporating both software and programmable logic components, and the development of tools to support this work. This enables us to claim that the methods demonstrated are not only feasible but also scale up to realistic system sizes, allowing development of such safety-critical software-hardware systems to the levels required by current system safety standards
Temporally coherent 4D reconstruction of complex dynamic scenes
This paper presents an approach for reconstruction of 4D temporally coherent
models of complex dynamic scenes. No prior knowledge is required of scene
structure or camera calibration allowing reconstruction from multiple moving
cameras. Sparse-to-dense temporal correspondence is integrated with joint
multi-view segmentation and reconstruction to obtain a complete 4D
representation of static and dynamic objects. Temporal coherence is exploited
to overcome visual ambiguities resulting in improved reconstruction of complex
scenes. Robust joint segmentation and reconstruction of dynamic objects is
achieved by introducing a geodesic star convexity constraint. Comparative
evaluation is performed on a variety of unstructured indoor and outdoor dynamic
scenes with hand-held cameras and multiple people. This demonstrates
reconstruction of complete temporally coherent 4D scene models with improved
nonrigid object segmentation and shape reconstruction.Comment: To appear in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) 2016 . Video available at:
https://www.youtube.com/watch?v=bm_P13_-Ds
General Dynamic Scene Reconstruction from Multiple View Video
This paper introduces a general approach to dynamic scene reconstruction from
multiple moving cameras without prior knowledge or limiting constraints on the
scene structure, appearance, or illumination. Existing techniques for dynamic
scene reconstruction from multiple wide-baseline camera views primarily focus
on accurate reconstruction in controlled environments, where the cameras are
fixed and calibrated and background is known. These approaches are not robust
for general dynamic scenes captured with sparse moving cameras. Previous
approaches for outdoor dynamic scene reconstruction assume prior knowledge of
the static background appearance and structure. The primary contributions of
this paper are twofold: an automatic method for initial coarse dynamic scene
segmentation and reconstruction without prior knowledge of background
appearance or structure; and a general robust approach for joint segmentation
refinement and dense reconstruction of dynamic scenes from multiple
wide-baseline static or moving cameras. Evaluation is performed on a variety of
indoor and outdoor scenes with cluttered backgrounds and multiple dynamic
non-rigid objects such as people. Comparison with state-of-the-art approaches
demonstrates improved accuracy in both multiple view segmentation and dense
reconstruction. The proposed approach also eliminates the requirement for prior
knowledge of scene structure and appearance
Spectral Analysis Network for Deep Representation Learning and Image Clustering
Deep representation learning is a crucial procedure in multimedia analysis
and attracts increasing attention. Most of the popular techniques rely on
convolutional neural network and require a large amount of labeled data in the
training procedure. However, it is time consuming or even impossible to obtain
the label information in some tasks due to cost limitation. Thus, it is
necessary to develop unsupervised deep representation learning techniques. This
paper proposes a new network structure for unsupervised deep representation
learning based on spectral analysis, which is a popular technique with solid
theory foundations. Compared with the existing spectral analysis methods, the
proposed network structure has at least three advantages. Firstly, it can
identify the local similarities among images in patch level and thus more
robust against occlusion. Secondly, through multiple consecutive spectral
analysis procedures, the proposed network can learn more clustering-friendly
representations and is capable to reveal the deep correlations among data
samples. Thirdly, it can elegantly integrate different spectral analysis
procedures, so that each spectral analysis procedure can have their individual
strengths in dealing with different data sample distributions. Extensive
experimental results show the effectiveness of the proposed methods on various
image clustering tasks
U4D: Unsupervised 4D Dynamic Scene Understanding
We introduce the first approach to solve the challenging problem of
unsupervised 4D visual scene understanding for complex dynamic scenes with
multiple interacting people from multi-view video. Our approach simultaneously
estimates a detailed model that includes a per-pixel semantically and
temporally coherent reconstruction, together with instance-level segmentation
exploiting photo-consistency, semantic and motion information. We further
leverage recent advances in 3D pose estimation to constrain the joint semantic
instance segmentation and 4D temporally coherent reconstruction. This enables
per person semantic instance segmentation of multiple interacting people in
complex dynamic scenes. Extensive evaluation of the joint visual scene
understanding framework against state-of-the-art methods on challenging indoor
and outdoor sequences demonstrates a significant (approx 40%) improvement in
semantic segmentation, reconstruction and scene flow accuracy.Comment: To appear in IEEE International Conference in Computer Vision ICCV
201
Multi-person Implicit Reconstruction from a Single Image
We present a new end-to-end learning framework to obtain detailed and spatially coherent reconstructions of multiple people from a single image. Existing multi-person methods suffer from two main drawbacks: they are often model-based and therefore cannot capture accurate 3D models of people with loose clothing and hair; or they require manual intervention to resolve occlusions or interactions. Our method addresses both limitations by introducing the first end-to-end learning approach to perform model-free implicit reconstruction for realistic 3D capture of multiple clothed people in arbitrary poses (with occlusions) from a single image. Our network simultaneously estimates the 3D geometry of each person and their 6DOF spatial locations, to obtain a coherent multi-human reconstruction. In addition, we introduce a new synthetic dataset that depicts images with a varying number of inter-occluded humans and a variety of clothing and hair styles. We demonstrate robust, high-resolution reconstructions on images of multiple humans with complex occlusions, loose clothing and a large variety of poses and scenes. Our quantitative evaluation on both synthetic and real world datasets demonstrates state-of-the-art performance with significant improvements in the accuracy and completeness of the reconstructions over competing approaches
4D Temporally Coherent Light-field Video
Light-field video has recently been used in virtual and augmented reality
applications to increase realism and immersion. However, existing light-field
methods are generally limited to static scenes due to the requirement to
acquire a dense scene representation. The large amount of data and the absence
of methods to infer temporal coherence pose major challenges in storage,
compression and editing compared to conventional video. In this paper, we
propose the first method to extract a spatio-temporally coherent light-field
video representation. A novel method to obtain Epipolar Plane Images (EPIs)
from a spare light-field camera array is proposed. EPIs are used to constrain
scene flow estimation to obtain 4D temporally coherent representations of
dynamic light-fields. Temporal coherence is achieved on a variety of
light-field datasets. Evaluation of the proposed light-field scene flow against
existing multi-view dense correspondence approaches demonstrates a significant
improvement in accuracy of temporal coherence.Comment: Published in 3D Vision (3DV) 201
- …