4 research outputs found

    UV-excited SnO2SnO_{2} nanowire based electronic nose

    Get PDF
    Unsere Atemluft ist täglichen Schwankungen ausgesetzt und die Marktnachfrage nach Sensoren, die die Luftqualität messen können, steigt rapide an. Ein großer Teil dieser Nachfrage kann mit Metall-Oxid Gas Sensoren bedient werden. Diese Art von Gassensoren hat jedoch einige Nachteile im Bezug auf Genauigkeit, Langzeitstabilität, Leistungsaufnahme und Selektivität. Auch fehlen großvolumige Anwendungsbeispiele auf dem Markt, die Metall-Oxid (MOX) Gassensoren einsetzen und dabei alle Systemanforderungen erfüllen. Diese Arbeit stellt die neueste Entwicklung der "KArlsruhe MIkro NAse", einer im Rahmen der EU Horizon 2020 Initiative namens SMOKESENSE entwickelten elektrischen Nase, vor und vergleicht diese mit dem aktuellen Stand der Technik für Metalloxid-Gassensoren. Es wird gezeigt, dass durch UV-Anregung der SnO2SnO_{2}-Nanodrähte ein geringerer Stromverbrauch sowie eine minimierte Siloxan-Kontaminierung im Vergleich zu klassischen MOX-Sensoren erzielt wird. Zudem lässt sich mittels Aerosol-Jet-Druck eine vereinfachte und kostengünstigere Herstellung der Sensoren realisieren. Um die Massenproduktionstauglichkeit für eine Anwendung als intelligenter Feuersensor sicherzustellen, wird der Wachstumsprozess der Nanodrähte optimiert. Außerdem wird ein neuartiges chemisches FET-ähnliches Sensorkonzept namens Chem-FET vorgestellt, das im Vergleich zu UV-KAMINA ein verbessertes Signal-Rausch-Verhältnis und eine schnellere Reaktionszeit bietet. Eine überwachte Lernmethode des Maschinellen Lernens basierend auf einer linearen Diskriminanzfunktion wird verwendet, um verschiedene Zielgerüche zu klassifizieren. In einer Anwendung als Feuersensor erwiesen sich die entwickelten Sensorprototypen als konkurrenzfähig. Zusätzlich werden Möglichkeiten aufgezeigt, das Sensorprinzip als Plattform für andere Anwendungsarten verwenden zu können. Während mit den vorgestellten Methoden die Leistung des Gesamtsystems optimiert werden konne, bleibt als Ausblick Verbesserungsbedarf in Bereichen, wie z. B. der Charakterisierung von Gerüchen und der Testmethodik für die Anwendung in hohen Stückzahlen

    UV-Light-Tunable p-/n-Type Chemiresistive Gas Sensors Based on Quasi-1D TiS3 Nanoribbons: Detection of Isopropanol at ppm Concentrations

    Get PDF
    The growing demand of society for gas sensors for energy-efficient environmental sensing stimulates studies of new electronic materials. Here, we investigated quasi-one-dimensional titanium trisulfide (TiS(3)) crystals for possible applications in chemiresistors and on-chip multisensor arrays. TiS(3) nanoribbons were placed as a mat over a multielectrode chip to form an array of chemiresistive gas sensors. These sensors were exposed to isopropanol as a model analyte, which was mixed with air at low concentrations of 1–100 ppm that are below the Occupational Safety and Health Administration (OSHA) permissible exposure limit. The tests were performed at room temperature (RT), as well as with heating up to 110 °C, and under an ultraviolet (UV) radiation at λ = 345 nm. We found that the RT/UV conditions result in a n-type chemiresistive response to isopropanol, which seems to be governed by its redox reactions with chemisorbed oxygen species. In contrast, the RT conditions without a UV exposure produced a p-type response that is possibly caused by the enhancement of the electron transport scattering due to the analyte adsorption. By analyzing the vector signal from the entire on-chip multisensor array, we could distinguish isopropanol from benzene, both of which produced similar responses on individual sensors. We found that the heating up to 110 °C reduces both the sensitivity and selectivity of the sensor array

    UV-Light-Tunable p-/n-Type Chemiresistive Gas Sensors Based on Quasi-1D TiS\u3csub\u3e3\u3c/sub\u3e Nanoribbons: Detection of Isopropanol at ppm Concentrations

    Get PDF
    The growing demand of society for gas sensors for energy-efficient environmental sensing stimulates studies of new electronic materials. Here, we investigated quasi-one-dimensional titanium trisulfide (TiS3) crystals for possible applications in chemiresistors and on-chip multisensor arrays. TiS3 nanoribbons were placed as a mat over a multielectrode chip to form an array of chemiresistive gas sensors. These sensors were exposed to isopropanol as a model analyte, which was mixed with air at low concentrations of 1–100 ppm that are below the Occupational Safety and Health Administration (OSHA) permissible exposure limit. The tests were performed at room temperature (RT), as well as with heating up to 110 oC, and under an ultraviolet (UV) radiation at λ = 345 nm. We found that the RT/UV conditions result in a n-type chemiresistive response to isopropanol, which seems to be governed by its redox reactions with chemisorbed oxygen species. In contrast, the RT conditions without a UV exposure produced a p-type response that is possibly caused by the enhancement of the electron transport scattering due to the analyte adsorption. By analyzing the vector signal from the entire on-chip multisensor array, we could distinguish isopropanol from benzene, both of which produced similar responses on individual sensors. We found that the heating up to 110 oC reduces both the sensitivity and selectivity of the sensor array

    UV-Light-Tunable p-/n-Type Chemiresistive Gas Sensors Based on Quasi-1D TiS3 Nanoribbons: Detection of Isopropanol at ppm Concentrations

    Full text link
    The growing demand of society for gas sensors for energy-efficient environmental sensing stimulates studies of new electronic materials. Here, we investigated quasi-one-dimensional titanium trisulfide (TiS3) crystals for possible applications in chemiresistors and on-chip multisensor arrays. TiS3 nanoribbons were placed as a mat over a multielectrode chip to form an array of chemiresistive gas sensors. These sensors were exposed to isopropanol as a model analyte, which was mixed with air at low concentrations of 1–100 ppm that are below the Occupational Safety and Health Administration (OSHA) permissible exposure limit. The tests were performed at room temperature (RT), as well as with heating up to 110 °C, and under an ultraviolet (UV) radiation at λ = 345 nm. We found that the RT/UV conditions result in a n-type chemiresistive response to isopropanol, which seems to be governed by its redox reactions with chemisorbed oxygen species. In contrast, the RT conditions without a UV exposure produced a p-type response that is possibly caused by the enhancement of the electron transport scattering due to the analyte adsorption. By analyzing the vector signal from the entire on-chip multisensor array, we could distinguish isopropanol from benzene, both of which produced similar responses on individual sensors. We found that the heating up to 110 °C reduces both the sensitivity and selectivity of the sensor array
    corecore