119 research outputs found

    Criminal Law—Court Orders Broad Relief to Inmates Throughout the Virginia Penal System Where Constitutional Rights Have Been Violated.

    Get PDF
    Landman v. Royster, 333 F. Supp. 621 (E.D. Va. 1971)

    Operator Ordering in Quantum Radiative Processes

    Full text link
    In this work we reexamine quantum electrodynamics of atomic eletrons in the Coulomb gauge in the dipole approximation and calculate the shift of atomic energy levels in the context of Dalibard, Dupont-Roc and Cohen-Tannoudji (DDC) formalism by considering the variation rates of physical observables. We then analyze the physical interpretation of the ordering of operators in the dipole approximation interaction Hamiltonian in terms of field fluctuations and self-reaction of atomic eletrons, discussing the arbitrariness in the statistical functions in second order bound-state perturbation theory.Comment: Latex file, 12 pages, no figures, includes PACS numbers and minor changes in the text with the addition of a new sectio

    Spontaneous and stimulated emission tuning characteristics of a Josephson junction in a microcavity

    Full text link
    We have investigated theoretically the tuning characteristics of a Josephson junction within a microcavity for one-photon spontaneous emission and for one-photon and two-photon stimulated emission. For spontaneous emission, we have established the linear relationship between the magnetic induction and the voltage needed to tune the system to emit at resonant frequencies. For stimulated emission, we have found an oscillatory dependence of the emission rate on the initial Cooper pair phase difference and the phase of the applied field. Under specific conditions, we have also calculated the values of the applied radiation amplitude for the first few emission maxima of the system and for the first five junction-cavity resonances for each process. Since the emission of photons can be controlled, it may be possible to use such a system to produce photons on demand. Such sources will have applications in the fields of quantum cryptography, communications and computation

    Ac-cotunneling through an interacting quantum dot under a magnetic field

    Full text link
    We analyze inelastic cotunneling through an interacting quantum dot subject to an ambient magnetic field in the weak tunneling regime under a non-adiabatic time-dependent bias-voltage. Our results clearly exhibit photon-assisted satellites and an overall suppression of differential conductance with increasing driving amplitude, which is consistent with experiments. We also predict a zero-anomaly in differential conductance under an appropriate driving frequency.Comment: Phys. Lett. A (in press

    Spontaneous excitation of an accelerated atom: The contributions of vacuum fluctuations and radiation reaction

    Full text link
    We consider an atom in interaction with a massless scalar quantum field. We discuss the structure of the rate of variation of the atomic energy for an arbitrary stationary motion of the atom through the quantum vacuum. Our main intention is to identify and to analyze quantitatively the distinct contributions of vacuum fluctuations and radiation reaction to the spontaneous excitation of a uniformly accelerated atom in its ground state. This gives an understanding of the role of the different physical processes underlying the Unruh effect. The atom's evolution into equilibrium and the Einstein coefficients for spontaneous excitation and spontaneous emission are calculated.Comment: 13 pages, KONS-RGKU-94-09, to appear in Phys. Rev.

    Radiative energy shifts of accelerated atoms

    Get PDF
    We consider the influence of acceleration on the radiative energy shifts of atoms in Minkowski space. We study a two-level atom coupled to a scalar quantum field. Using a Heisenberg picture approach, we are able to separate the contributions of vacuum fluctuations and radiation reaction to the Lamb shift of the two-level atom. The resulting energy shifts for the special case of a uniformly accelerated atom are then compared with those of an atom at rest.Comment: 12 pages, Latex, 1 figure as uuencoded eps file, shorter version will appear in Phys. Rev.

    Resonant dipole-dipole interaction in the presence of dispersing and absorbing surroundings

    Full text link
    Within the framework of quantization of the macroscopic electromagnetic field, equations of motion and an effective Hamiltonian for treating both the resonant dipole-dipole interaction between two-level atoms and the resonant atom-field interaction are derived, which can suitably be used for studying the influence of arbitrary dispersing and absorbing material surroundings on these interactions. The theory is applied to the study of the transient behavior of two atoms that initially share a single excitation, with special emphasis on the role of the two competing processes of virtual and real photon exchange in the energy transfer between the atoms. In particular, it is shown that for weak atom-field interaction there is a time window, where the energy transfer follows a rate regime of the type obtained by ordinary second-order perturbation theory. Finally, the resonant dipole-dipole interaction is shown to give rise to a doublet spectrum of the emitted light for weak atom-field interaction and a triplet spectrum for strong atom-field interaction.Comment: 15 pages, 1 figure, RevTE

    The Dipole Coupling of Atoms and Light in Gravitational Fields

    Full text link
    The dipole coupling term between a system of N particles with total charge zero and the electromagnetic field is derived in the presence of a weak gravitational field. It is shown that the form of the coupling remains the same as in flat space-time if it is written with respect to the proper time of the observer and to the measurable field components. Some remarks concerning the connection between the minimal and the dipole coupling are given.Comment: 10 pages, LaTe

    Squeezed Light Generation in Nonlinear System with Chaotic Dynamics

    Full text link
    The squeezing in a nonlinear system with chaotic dynamics is considered. The model describing interaction of collection of two-level atoms with a single-mode of self-consistent field and an external field is analyzed. It is shown that in the semiclassical limit, in contrast to the regular behaviour, the chaotic dynamics result in: (i) an increase in squeezing, (ii) unstable squeezing and contraction of time intervals of squeezing on large enough times. The possibility of the experimental observation of the described effects is discussed.Comment: 12 pages, RevTEX (EPSF-style), 6 figure

    Quantum field theory of cooperative atom response: Low light intensity

    Full text link
    We study the interactions of a possibly dense and/or quantum degenerate gas with driving light. Both the atoms and the electromagnetic fields are represented by quantum fields throughout the analysis. We introduce a field theory version of Markov and Born approximations for the interactions of light with matter, and devise a procedure whereby certain types of products of atom and light fields may be put to a desired, essentially normal, order. In the limit of low light intensity we find a hierarchy of equations of motion for correlation functions that contain one excited-atom field and one, two, three, etc., ground state atom fields. It is conjectured that the entire linear hierarchy may be solved by solving numerically the classical equations for the coupled system of electromagnetic fields and charged harmonic oscillators. We discuss the emergence of resonant dipole-dipole interactions and collective linewidths, and delineate the limits of validity of the column density approach in terms of non-cooperative atoms by presenting a mathematical example in which this approach is exact.Comment: 35 pages, RevTe
    • …
    corecore