12 research outputs found

    Calibration of continuous glucose monitoring sensors by time-varying models and Bayesian estimation

    Get PDF
    Minimally invasive continuous glucose monitoring (CGM) sensors are wearable medical devices that provide frequent (e.g., 1-5 min sampling rate) real-time measurements of glucose concentration for several consecutive days. This can be of great help in the daily management of diabetes. Most of the CGM systems commercially available today have a wire-based electrochemical sensor, usually placed in the subcutaneous tissue, which measures a "raw" electrical current signal via a glucose-oxidase electrochemical reaction. Observations of the raw electrical signal are frequently revealed by the sensor on a fine, uniformly spaced, time grid. These samples of electrical nature are in real-time converted to interstitial glucose (IG) concentration levels through a calibration process by fitting a few blood glucose (BG) concentration measurements, sparsely collected by the patient through fingerprick. Usually, for coping with such a process, CGM sensor manufacturers employ linear calibration models to approximate, albeit in limited time-intervals, the nonlinear relationship between electrical signal and glucose concentration. Thus, on the one hand, frequent calibrations (e.g., two per day) are required to guarantee a good sensor accuracy. On the other, each calibration requires patients to add uncomfortable extra actions to the many already needed in the routine of diabetes management. The aim of this thesis is to develop new calibration algorithms for minimally invasive CGM sensors able to ensure good sensor accuracy with the minimum number of calibrations. In particular, we propose i) to replace the time-invariant gain and offset conventionally used by the linear calibration models with more sophisticated time-varying functions valid for multiple-day periods, with unknown model parameters for which an a priori statistical description is available from independent training sets; ii) to numerically estimate the calibration model parameters by means of a Bayesian estimation procedure that exploits the a priori information on model parameters in addition to some BG samples sparsely collected by the patient. The thesis is organized in 6 chapters. In Chapter 1, after a background introduction on CGM sensor technologies, the calibration problem is illustrated. Then, some state-of-art calibration techniques are briefly discussed with their open problems, which result in the aims of the thesis illustrated at the end of the chapter. In Chapter 2, the datasets used for the implementation of the calibration techniques are described, together with the performance metrics and the statistical analysis tools which will be employed to assess the quality of the results. In Chapter 3, we illustrate a recently proposed calibration algorithm (Vet- toretti et al., IEEE Trans Biomed Eng 2016), which represents the starting point of the study proposed in this thesis. In particular, we demonstrate that, thanks to the development of a time-varying day-specific Bayesian prior, the algorithm can become able to reduce the calibration frequency from two to one per day. However, the linear calibration model used by the algorithm has domain of validity limited to certain time intervals, not allowing to further reduce calibrations to less then one per day and calling for the development of a new calibration model valid for multiple-day periods like that developed in the remainder of this thesis. In Chapter 4, a novel Bayesian calibration algorithm working in a multi-day framework (referred to as Bayesian multi-day, BMD, calibration algorithm) is presented. It is based on a multiple-day model of sensor time-variability with second order statistical priors on its unknown parameters. In each patient-sensor realization, the numerical values of the calibration model parameters are determined by a Bayesian estimation procedure exploiting the BG samples sparsely collected by the patient. In addition, the distortion introduced by the BG-to-IG kinetics is compensated during parameter identification via non-parametric deconvolution. The BMD calibration algorithm is applied to two datasets acquired with the "present-generation" Dexcom (Dexcom Inc., San Diego, CA) G4 Platinum (DG4P) CGM sensor and a "next-generation" Dexcom CGM sensor prototype (NGD). In the DG4P dataset, results show that, despite the reduction of calibration frequency (on average from 2 per day to 0.25 per day), the BMD calibration algorithm significantly improves sensor accuracy compared to the manufacturer calibration algorithm. In the NGD dataset, performance is even better than that of present generation, allowing to further reduce calibrations toward zero. In Chapter 5, we analyze the potential margins for improvement of the BMD calibration algorithm and propose a further extension of the method. In particular, to cope with the inter-sensor and inter-subject variability, we propose a multi-model approach and a Bayesian model selection framework (referred to as multi-model Bayesian framework, MMBF) in which the most likely calibration model is chosen among a finite set of candidates. A preliminary assessment of the MMBF is conducted on synthetic data generated by a well-established type 1 diabetes simulation model. Results show a statistically significant accuracy improvement compared to the use of a unique calibration model. Finally, the major findings of the work carried out in this thesis, possible applications and margins for improvement are summarized in Chapter 6

    Wearable continuous glucose monitoring sensors: A revolution in diabetes treatment

    Get PDF
    Worldwide, the number of people affected by diabetes is rapidly increasing due to aging populations and sedentary lifestyles, with the prospect of exceeding 500 million cases in 2030, resulting in one of the most challenging socio-health emergencies of the third millennium. Daily management of diabetes by patients relies on the capability of correctly measuring glucose concentration levels in the blood by using suitable sensors. In recent years, glucose monitoring has been revolutionized by the development of Continuous Glucose Monitoring (CGM) sensors, wearable non/minimally-invasive devices that measure glucose concentration by exploiting different physical principles, e.g., glucose-oxidase, fluorescence, or skin dielectric properties, and provide real-time measurements every 1–5 min. CGM opened new challenges in different disciplines, e.g., medicine, physics, electronics, chemistry, ergonomics, data/signal processing, and software development to mention but a few. This paper first makes an overview of wearable CGM sensor technologies, covering both commercial devices and research prototypes. Then, the role of CGM in the actual evolution of decision support systems for diabetes therapy is discussed. Finally, the paper presents new possible horizons for wearable CGM sensor applications and perspectives in terms of big data analytics for personalized and proactive medicine

    Calibration of minimally invasive continuous glucose monitoring sensors: State-of-the-art and current perspectives

    No full text
    Minimally invasive continuous glucose monitoring (CGM) sensors are wearable medical devices that provide real-time measurement of subcutaneous glucose concentration. This can be of great help in the daily management of diabetes. Most of the commercially available CGM devices have a wire-based sensor, usually placed in the subcutaneous tissue, which measures a “raw” current signal via a glucose-oxidase electrochemical reaction. This electrical signal needs to be translated in real-time to glucose concentration through a calibration process. For such a scope, the first commercialized CGM sensors implemented simple linear regression techniques to fit reference glucose concentration measurements periodically collected by fingerprick. On the one hand, these simple linear techniques required several calibrations per day, with the consequent patient’s discomfort. On the other, only a limited accuracy was achieved. This stimulated researchers to propose, over the last decade, more sophisticated algorithms to calibrate CGM sensors, resorting to suitable signal processing, modelling, and machine-learning techniques. This review paper will first contextualize and describe the calibration problem and its implementation in the first generation of CGM sensors, and then present the most recently-proposed calibration algorithms, with a perspective on how these new techniques can influence future CGM products in terms of accuracy improvement and calibration reduction

    Continuous Glucose Monitoring: Current Use in Diabetes Management and Possible Future Applications

    No full text
    The recent announcement of the production of new low-cost continuous glucose monitoring (CGM) sensors, the approval of marketed CGM sensors for making treatment decisions, and new reimbursement criteria have the potential to revolutionize CGM use. After briefly summarizing current CGM applications, we discuss how, in our opinion, these changes are expected to extend CGM utilization beyond diabetes patients, for example, to subjects with prediabetes or even healthy individuals. We also elaborate on how the integration of CGM data with other relevant information, for example, health records and other medical device/wearable sensor data, will contribute to creating a digital data ecosystem that will improve our understanding of the etiology and complications of diabetes and will facilitate the development of data analytics for personalized diabetes management and prevention

    Retrospective Continuous-Time Blood Glucose Estimation in Free Living Conditions with a Non-Invasive Multisensor Device

    No full text
    Even if still at an early stage of development, non-invasive continuous glucose monitoring (NI-CGM) sensors represent a promising technology for optimizing diabetes therapy. Recent studies showed that the Multisensor provides useful information about glucose dynamics with a mean absolute relative difference (MARD) of 35.4% in a fully prospective setting. Here we propose a method that, exploiting the same Multisensor measurements, but in a retrospective setting, achieves a much better accuracy. Data acquired by the Multisensor during a long-term study are retrospectively processed following a two-step procedure. First, the raw data are transformed to a blood glucose (BG) estimate by a multiple linear regression model. Then, an enhancing module is applied in cascade to the regression model to improve the accuracy of the glucose estimation by retrofitting available BG references through a time-varying linear model. MARD between the retrospectively reconstructed BG time-series and reference values is 20%. Here, 94% of values fall in zone A or B of the Clarke Error Grid. The proposed algorithm achieved a level of accuracy that could make this device a potential complementary tool for diabetes management and also for guiding prediabetic or nondiabetic users through life-style changes
    corecore