118 research outputs found
Evaluation of different DNA extraction methods and loop-mediated isothermal amplification primers for the detection of Mycobacterium ulcerans in clinical specimens
Background: Early diagnosis and treatment of Buruli ulcer is critical in order to avoid the debilitating effects of the disease. In this regard, the development of new diagnostic and point of care tools is encouraged. The loop-mediated isothermal amplification for the detection of Mycobacterium ulcerans represents one of the new tools with a good potential of being developed into a point of care test. There is however the need to standardize the assays, reduce sample preparation times, improve the detection/visualization system and optimize them for high-throughput screening, adaptable to low resourced laboratories. Methods: In this study, we assessed two DNA extraction protocols (modified Boom and EasyNAT methods), three previously published LAMP primer sets (BURULI, MU 2404 and BU-LAMP), and compared the sensitivity and specificity of LAMP assays on three DNA amplification platforms. Results: Our results show that Buruli ulcer diagnosis using primers targeting IS2404 for the LAMP method is sensitive (73.75-91.49%), depending on the DNA extraction method used. Even though the modified Boom DNA extraction method provided the best results, its instrumentation requirement prevent it from being field applicable. The EasyNAT method on the other hand is simpler and may represent the best method for DNA extraction in less resourced settings. Conclusions: For further work on the development and use of LAMP tests for Buruli diagnosis, it is recommended that the BURULI sets of primers be used, as these yielded the best results in terms of sensitivity (87.50-91.49%) and specificity (89.23-100%), depending on the DNA extraction methods used.This study was supported by the Swiss Agency for Development and Cooperation and the UBS Optimus Foundation through FIND, Geneva-Switzerland. The funders had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.S
Evaluation of an electricity-independent method for IS 2404 Loop-mediated isothermal amplification (LAMP) diagnosis of Buruli ulcer in resource-limited settings
Introduction: Buruli ulcer (BU) caused by Mycobacterium ulcerans (MU) is a devastating necrotic skin disease. PCR, recommended for confirmation of BU by WHO, requires an adequately equipped laboratory, therefore often delaying timely diagnosis and treatment of BU patients in remote settings. Loop-mediated isothermal amplification (LAMP) is a PCR-based protocol for isothermal amplification of DNA that has been suggested for diagnosis of BU in low-resource settings. Study aims and methods: This is an exploratory diagnostic test evaluation study, with an embedded qualitative sub-study. Its aims are two-fold: First, to evaluate a simple rapid syringe-based DNA extraction method (SM) in comparison with a more elaborate conventional DNA extraction method (CM), followed by a LAMP assay targeting IS2404 for the detection of MU, either using a commercially available pocket warmer (pw) or a heat block (hb) for incubation. Second, to complement this by exploring the diagnostic workflow for BU at a community-based health centre in an endemic area in rural Ghana as an example of a potential target setting, using interviews with researchers and health care workers (HCWs). Diagnostic test evaluation results are discussed in relation to the requirements of a target product profile (TPP) for BU diagnosis and the target setting. Results: A protocol using SM for DNA extraction followed by IS2404 PCR (IS2404 PCRSM) was able to identify MU DNA in 73 out of 83 BU clinical specimens submitted for diagnosis. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of IS2404 PCRSM were 90.12%, 100%, 100% and 65.21% respectively, as compared to the reference standard IS2404 PCR in combination with a standard extraction protocol for mycobacterial DNA. Evaluation of the LAMP assay on 64 SM DNA extracts showed a sensitivity, specificity, PPV and NPV of 83.6%, 100%, 100% and 50%, respectively, using either pocket warmer (pwLAMPSM) or heat block (hbLAMPSM) for incubation of the reaction, as compared to the same reference standard. The limit of detection of pwLAMPSM was found to be 30 copies of the IS2404 target. Interview findings explored barriers to BU diagnosis and treatment, including perceptions of the disease, costs, and availability of transport. Participants confirmed that a diagnosis at the PoC, in addition to screening based on clinical criteria, would be advantageous in order to prevent delays and loss to follow-up. Discussion and conclusions: The high diagnostic and analytic accuracy of the pwLAMP, evaluated by us in combination with a syringe-based DNA extraction method, supports its potential use for the rapid detection of MU in suspected BU samples at the community or primary health care level without reliable electricity supply. Further optimization needs include a lysis buffer, evaluation directly at the PoC and/or other sites, assessing staff training requirements and quality control
Mycobacterium liflandii Infection in European Colony of Silurana tropicalis
Mycobacterium liflandii causes a fatal frog disease in captive anurans. Here we report, to our knowledge, the first epizootic of mycobacteriosis in a European colony of clawed frogs (Silurana tropicalis), previously imported from a United States biologic supply company. Our findings suggest the emerging potential of this infection through international trade
Evaluation of the fluorescent-thin layer chromatography (f-TLC) for the diagnosis of Buruli ulcer disease in Ghana
BACKGROUND: Buruli ulcer is a tissue necrosis infection caused by an environmental mycobacterium called Mycobacterium ulcerans (MU). The disease is most prevalent in rural areas with the highest rates in West and Central African countries. The bacterium produces a toxin called mycolactone which can lead to the destruction of the skin, resulting in incapacitating deformities with an enormous economic and social burden on patients and their caregivers. Even though there is an effective antibiotic treatment for BU, the control and management rely on early case detection and rapid diagnosis to avert morbidities. The diagnosis of Mycobacterium ulcerans relies on smear microscopy, culture histopathology, and PCR. Unfortunately, all the current laboratory diagnostics have various limitations and are not available in endemic communities. Consequently, there is a need for a rapid diagnostic tool for use at the community health centre level to enable diagnosis and confirmation of suspected cases for early treatment. The present study corroborated the diagnostic performance and utility of fluorescent-thin layer chromatography (f-TLC) for the diagnosis of Buruli ulcer. METHODOLOGY/PRINCIPAL FINDINGS: The f-TLC method was evaluated for the diagnosis of Buruli ulcer in larger clinical samples than previously reported in an earlier preliminary study Wadagni et al. (2015). A total of 449 patients suspected of BU were included in the final data analysis out of which 122 (27.2%) were positive by f-TLC and 128 (28.5%) by PCR. Using a composite reference method generated from the two diagnostic methods, 85 (18.9%) patients were found to be truly infected with M. ulcerans, 284 (63.3%) were uninfected, while 80 (17.8%) were misidentified as infected or noninfected by the two methods. The data obtained was used to determine the discriminatory accuracy of the f-TLC against the gold standard IS2404 PCR through the analysis of its sensitivity, specificity, positive (+LR), and negative (–LR) likelihood ratio. The positive (PPV) and negative (NPV) predictive values, area under the receiver operating characteristic curve Azevedo et al. (2014), and diagnostic odds ratio were used to assess the predictive accuracy of the f-TLC method. The sensitivity of f-TLC was 66.4% (85/128), specificity was 88.5% (284/321), while the diagnostic accuracy was 82.2% (369/449). The AUC stood at 0.774 while the PPV, NPV, +LR, and–LR were 69.7% (85/122), 86.9% (284/327), 5.76, and 0.38, respectively. The use of the rule-of-thumb interpretation of diagnostic tests suggests that the method is good for use as a diagnostic tool. CONCLUSIONS/SIGNIFICANCE: Larger clinical samples than previously reported had been used to evaluate the f-TLC method for the diagnosis of Buruli ulcer. A sensitivity of 66.4%, a specificity of 88.5%, and diagnostic accuracy of 82.2% were obtained. The method is good for diagnosis and will help in making early clinical decisions about the patients as well as patient management and facilitating treatment decisions. However, it requires a slight modification to address the challenge of background interference and lack of automatic readout to become an excellent diagnostic tool
First Cultivation and Characterization of Mycobacterium ulcerans from the Environment
Mycobacterium ulcerans infection, or Buruli ulcer, is the third most common mycobacteriosis of humans worldwide, after tuberculosis and leprosy. Buruli ulcer is a neglected, devastating, necrotizing disease, sometimes producing massive, disfiguring ulcers, with huge social impact. Buruli ulcer occurs predominantly in impoverished, humid, tropical, rural areas of Africa, where the incidence has been increasing, surpassing tuberculosis and leprosy in some regions. Besides being a disease of the poor, Buruli ulcer is a poverty-promoting chronic infectious disease. There is strong evidence that M. ulcerans is not transmitted person to person but is an environmental pathogen transmitted to humans from its aquatic niches. However, until now M. ulcerans has not been isolated in pure culture from environmental sources. This manuscript describes the first isolation, to our knowledge, of M. ulcerans in pure culture from an environmental source. This strain, which is highly virulent for mice, has microbiological features typical of African strains of M. ulcerans and was isolated from an aquatic insect from a Buruli ulcer–endemic area in Benin, West Africa. Our findings support the concept that M. ulcerans is a pathogen of humans with an aquatic environmental niche and will have positive consequences for the control of this neglected and socially important tropical disease
Recommended from our members
Simple, Rapid Mycobacterium ulcerans Disease Diagnosis from Clinical Samples by Fluorescence of Mycolactone on Thin Layer Chromatography
Introduction: Mycobacterium ulcerans infection, known as Buruli ulcer, is a disease of the skin and subcutaneous tissues which is an important but neglected tropical disease with its major impact in rural parts of West and Central Africa where facilities for diagnosis and management are poorly developed. We evaluated fluorescent thin layer chromatography (f-TLC) for detection of mycolactone in the laboratory using samples from patients with Buruli ulcer and patients with similar lesions that gave a negative result on PCR for the IS2404 repeat sequence of M. ulcerans Methodology/Principal findings Mycolactone and DNA extracts from fine needle aspiration (FNA), swabs and biopsy specimen were used to determine the sensitivity and specificity of f-TLC when compared with PCR for the IS2404. For 71 IS2404 PCR positive and 28 PCR negative samples the sensitivity was 73.2% and specificity of 85.7% for f-TLC. The sensitivity was similar for swabs (73%), FNAs (75%) and biopsies (70%). Conclusions: We have shown that mycolactone can be detected from M. ulcerans infected skin tissue by f-TLC technique. The technique is simple, easy to perform and read with minimal costs. In this study it was undertaken by a member of the group from each endemic country. It is a potentially implementable tool at the district level after evaluation in larger field studies
Virulence potential of Staphylococcus aureus isolates from Buruli ulcer patients
Buruli ulcer (BU) is a necrotizing infection of the skin and subcutaneous tissue caused by Mycobacterium ulcerans. BU wounds may also be colonized with other microorganisms including Staphylococcus aureus. This study aimed to characterize the virulence factors of S. aureus isolated from BU patients. Previously sequenced genomes of 21 S. aureus isolates from BU patients were screened for the presence of virulence genes. The results show that all S. aureus isolates harbored on their core genomes genes for known virulence factors like alpha-hemolysin, and the a and beta-phenol soluble modulins. Besides the core genome virulence genes, mobile genetic elements (MGEs), i.e. prophages, genomic islands, pathogenicity islands and a Staphylococcal cassette chromosome (ECG) were found to carry different combinations of virulence factors, among them genes that are known to encode factors that promote immune evasion, superantigens and Panton-Valentine Leucocidin. The present observations imply That the S. aureus isolates from BU patients harbor a diverse repertoire of virulence genes that may enhance bacterial survival and persistence in the wound environment and potentially contribute to delayed wound healing
Molecular Characterization of Staphylococcus aureus Isolates Transmitted between Patients with Buruli Ulcer
BACKGROUND:Buruli ulcer (BU) is a skin infection caused by Mycobacterium ulcerans. The wounds of most BU patients are colonized with different microorganisms, including Staphylococcus aureus. METHODOLOGY:This study investigated possible patient-to-patient transmission events of S. aureus during wound care in a health care center. S. aureus isolates from different BU patients with overlapping visits to the clinic were whole-genome sequenced and analyzed by a gene-by-gene approach using SeqSphere(+) software. In addition, sequence data were screened for the presence of genes that conferred antibiotic resistance. PRINCIPAL FINDINGS:SeqSphere(+) analysis of whole-genome sequence data confirmed transmission of methicillin resistant S. aureus (MRSA) and methicillin susceptible S. aureus among patients that took place during wound care. Interestingly, our sequence data show that the investigated MRSA isolates carry a novel allele of the fexB gene conferring chloramphenicol resistance, which had thus far not been observed in S. aureus
Detection of Mycobacterium ulcerans by the Loop Mediated Isothermal Amplification Method
In order to develop a simple and rapid test that can be used to diagnose Buruli ulcer under field conditions, we modified the conventional LAMP assay by using a disposable pocket warmer as a heating device for generating a constant temperature for the test reaction and employed the use of crude sample preparations consisting of boiled and unboiled extracts of the clinical specimen instead of using purified DNA as the diagnostic specimen. Thirty clinical specimens from suspected Buruli ulcer patients were investigated by the modified LAMP (or pocket warmer LAMP) and the conventional LAMP, as well as IS2404 PCR, a reference method for the detection of Mycobacterium ulcerans. There was no significant difference in the detection rate (63–70%) in all of the methods when purified samples were used for the tests. On the other hand the use of crude specimen preparation resulted in a drop in detection rate (30–40%). This study demonstrates that the LAMP test can be used for rapid detection of M. ulcerans when purified DNA preparations are used. With further improvements in the sample reaction, as well as in specimen purification, the pocket warmer LAMP may provide a simple and rapid diagnostic test for Buruli ulcer
Methicillin Resistant Staphylococcus aureus Transmission in a Ghanaian Burn Unit:The Importance of Active Surveillance in Resource-Limited Settings
Objectives:Staphylococcus aureus infections in burn patients can lead to serious complications and death. The frequency of S. aureus infection is high in low- and middle-income countries presumably due to limited resources, misuse of antibiotics and poor infection control. The objective of the present study was to apply population genomics to precisely define, for the first time, the transmission of antibiotic resistant S. aureus in a resource-limited setting in sub-Saharan Africa.Methods:Staphylococcus aureus surveillance was performed amongst burn patients and healthcare workers during a 7-months survey within the burn unit of the Korle Bu Teaching Hospital in Ghana.Results: Sixty-six S. aureus isolates (59 colonizing and 7 clinical) were obtained from 31 patients and 10 healthcare workers. Twenty-one of these isolates were ST250-IV methicillin-resistant S. aureus (MRSA). Notably, 25 (81%) of the 31 patients carried or were infected with S. aureus within 24 h of admission. Genome comparisons revealed six distinct S. aureus clones circulating in the burn unit, and demonstrated multiple transmission events between patients and healthcare workers. Further, the collected S. aureus isolates exhibited a wide range of genotypic resistances to antibiotics, including trimethoprim (21%), aminoglycosides (33%), oxacillin (33%), chloramphenicol (50%), tetracycline (59%) and fluoroquinolones (100%).Conclusion: Population genomics uncovered multiple transmission events of S. aureus, especially MRSA, within the investigated burn unit. Our findings highlight lapses in infection control and prevention, and underscore the great importance of active surveillance to protect burn victims against multi-drug resistant pathogens in resource-limited settings
- …