6 research outputs found

    Afri-Can Forum 2

    Full text link

    A Comprehensive Panel of Near-Full-Length Clones and Reference Sequences for Non-Subtype B Isolates of Human Immunodeficiency Virus Type 1

    Get PDF
    Non-subtype B viruses cause the vast majority of new human immunodeficiency virus type 1 (HIV-1) infections worldwide and are thus the major focus of international vaccine efforts. Although their geographic dissemination is carefully monitored, their immunogenic and biological properties remain largely unknown, in part because well-characterized virological reference reagents are lacking. In particular, full-length clones and sequences are rare, since subtype classification is frequently based on small PCR-derived viral fragments. There are only five proviral clones available for viruses other than subtype B, and these represent only 3 of the 10 proposed (group M) sequence subtypes. This lack of reference sequences also confounds the identification and analysis of mosaic (recombinant) genomes, which appear to be arising with increasing frequency in areas where multiple sequence subtypes cocirculate. To generate a more representative panel of non-subtype B reference reagents, we have cloned (by long PCR or lambda phage techniques) and sequenced 10 near-full-length HIV-1 genomes (lacking less than 80 bp of long terminal repeat sequences) from primary isolates collected at major epicenters of the global AIDS pandemic. Detailed phylogenetic analyses identified six that represented nonrecombinant members of HIV-1 subtypes A (92UG037.1), C (92BR025.8), D (84ZR085.1 and 94UG114.1), F (93BR020.1), and H (90CF056.1), the last two comprising the first full-length examples of these subtypes. Four others were found to be complex mosaics of subtypes A and C (92RW009.6), A and G (92NG083.2 and 92NG003.1), and B and F (93BR029.4), again emphasizing the impact of intersubtype recombination on global HIV-1 diversification. Although a number of clones had frameshift mutations or translational stop codons in major open reading frames, all the genomes contained a complete set of genes and three had intact genomic organizations without inactivating mutations. Reconstruction of one of these (94UG114.1) yielded replication-competent virus that grew to high titers in normal donor peripheral blood mononuclear cell cultures. This panel of non-subtype B reference genomes should prove valuable for structure-function studies of genetically diverse viral gene products, the generation of subtype-specific immunological reagents, and the production of DNA- and protein-based subunit vaccines directed against a broader spectrum of viruses

    Country Level Diversity of the HIV-1 Pandemic between 1990 and 2015

    No full text
    The global diversity of HIV forms a major challenge to the development of an HIV vaccine, as well as diagnostic, drug resistance, and viral load assays, which are essential to reaching the UNAIDS 90:90:90 targets. We sought to determine country level HIV-1 diversity globally between 1990 and 2015. We assembled a global HIV-1 molecular epidemiology database through a systematic literature search and a global survey. We searched PubMed, EMBASE (Ovid), CINAHL (Ebscohost), and Global Health (Ovid) for HIV-1 subtyping studies published from 1 January 1990 to 31 December 2015. We collected additional unpublished data through a global survey of experts. Prevalence studies with original HIV-1 subtyping data collected between 1990 and 2015 were included. This resulted in a database with 383,519 subtyped HIV-1 samples from 116 countries over four time periods (1990 to 1999, 2000 to 2004, 2005 to 2009, and 2010 to 2015). We analyzed country-specific numbers of distinct HIV-1 subtypes, circulating recombinant forms (CRFs), and unique recombinant forms (URFs) in each time period. We also analyzed country-specific proportions of infections due to HIV-1 recombinants, CRFs, and URFs and calculated the Shannon diversity index for each country. Finally, we analyzed global temporal trends in each of these measures of HIV-1 diversity. We found extremely wide variation in complexity of country level HIV diversity around the world. Central African countries such as Chad, Democratic Republic of the Congo, Angola, and Republic of the Congo have the most diverse HIV epidemics. The number of distinct HIV-1 subtypes and recombinants was greatest in Western Europe (Spain and France) and North America (United States) (up to 39 distinct HIV-1 variants in Spain). The proportion of HIV-1 infections due to recombinants was highest in Southeast Asia (>95% of infections in Viet Nam, Cambodia, and Thailand), China, and West and Central Africa, mainly due to high proportions of CRF01_AE and CRF02_AG. Other CRFs played major roles (>75% of HIV-1 infections) in Estonia (CRF06_cpx), Iran (CRF35_AD), and Algeria (CRF06_cpx). The highest proportions of URFs (>30%) were found in Myanmar, Republic of the Congo, and Argentina. Global temporal analysis showed consistent increases over time in country level numbers of distinct HIV-1 variants and proportions of CRFs and URFs, leading to increases in country level HIV-1 diversity. Our study provides epidemiological evidence that the HIV pandemic is diversifying at country level and highlights the increasing challenge to prevention and treatment efforts. HIV-1 molecular epidemiological surveillance needs to be continued and improved. IMPORTANCE This is the first study to analyze global country level HIV-1 diversity from 1990 to 2015. We found extremely wide variation in complexity of country level HIV diversity around the world. Central African countries have the most diverse HIV epidemics. The number of distinct HIV-1 subtypes and recombinants was greatest in Western Europe and North America. The proportion of HIV-1 infections due to recombinants was highest in South-East Asia, China, and West and Central Africa. The highest proportions of URFs were found in Myanmar, Republic of the Congo, and Argentina. Our study provides epidemiological evidence that the HIV pandemic is diversifying at country level and highlights the increasing challenge to HIV vaccine development and diagnostic, drug resistance, and viral load assays

    Afri-Can Forum 2

    Get PDF
    CITATION: Mukudu, H., et al. 2016. Afri-Can Forum 2. BMC Infectious Diseases, 16:315, doi:10.1186/s12879-016-1466-6.The original publication is available at https://bmcinfectdis.biomedcentral.comENGLISH ABSTRACT: We are pleased to present peer reviewed forum proceedings of the 2nd synchronicity forum of GHRI/CHVIfunded Canadian and African HIV prevention and vaccine teams Forum objectives ∙GHRI-funded capacity building and HIV prevention research teams presented highlights of achievements ∙Teams discussed how to jointly build on achievements for sustainability ∙Provided an opportunity for inter-team collaboration, synchronize best approach to capacity building, mentoring of new researchers and building leadership ∙Provided opportunities for informal discussions and networking among the teams. ∙Teams learnt about recent advances in the area of African regulatory and ethics review process ∙The forum proceedings was a special supplement in an openaccess journal was producedhttps://bmcinfectdis.biomedcentral.com/articles/supplements/volume-16-supplement-2Publisher's versio
    corecore