13 research outputs found

    Molecular dynamic and bioinformatic studies of metformin-induced ACE2 phosphorylation in the presence of different SARS-CoV-2 S protein mutations

    No full text
    The SARS-CoV-2 infection activates host kinases and causes high phosphorylation in both the host and the virus. There were around 70 phosphorylation sites found in SARS-CoV-2 viral proteins. Besides, almost 15,000 host phosphorylation sites were found in SARS-CoV-2-infected cells. COVID-19 is thought to enter cells via the well-known receptor Angiotensin-Converting Enzyme 2 (ACE2) and the serine protease TMPRSS2. Substantially, the COVID-19 infection doesn’t induce phosphorylation of the ACE2 receptor at Serin-680(s680). Metformin's numerous pleiotropic properties and extensive use in medicine including COVID-19, have inspired experts to call it the “aspirin of the twenty-first century”. Metformin's impact on COVID-19 has been verified in clinical investigations via ACE2 receptor phosphorylation at s680. In the infection of COVID-19, sodium-dependent transporters including the major neutral amino acid (B0AT1) is regulated by ACE2. The structure of B0AT1 complexing with the COVID-19 receptor ACE2 enabled significant progress in the creation of mRNA vaccines. We aimed to study the impact of the interaction of the phosphorylation form of ACE2-s680 with wild-type (WT) and different mutations of SARS-CoV-2 infection such as delta, omicron, and gamma (γ) on their entrance of host cells as well as the regulation of B0AT1by the SARS-CoV-2 receptor ACE2. Interestingly, compared to WT SARS-CoV-2, ACE2 receptor phosphorylation at s680 produces conformational alterations in all types of SARS-CoV-2. Furthermore, our results showed for the first time that this phosphorylation significantly influences ACE2 sites K625, K676, and R678, which are key mediators for ACE2-B0AT1 complex

    Bio_Fabricated Levan Polymer from Bacillus subtilis MZ292983.1 with Antibacterial, Antibiofilm, and Burn Healing Properties

    No full text
    The biopolymer levan has sparked a lot of interest in commercial production and various industrial applications. In this study, a bacterial isolate with promising levan-producing ability was isolated from a soil sample obtained from Princess Nourah bint Abdulrahman University in Saudi Arabia. The isolate has been identified and submitted to GenBank as Bacillus subtilis MZ292983.1. The bacterial levan polymer was extracted using ethyl alcohol (75%) and CaCl2 (1%) and then characterized using several approaches, such as Fourier transform infrared spectrometry and nuclear magnetic resonance. The IR spectrum of the levan polymer showed characteristic peaks confirming characteristics of polysaccharides, including a broad stretching peak of OH around 3417 cm−1 and aliphatic CH stretching was observed as two peaks at 2943, and 2885 cm−1. In addition, the FTIR spectrum featured an absorption at 2121 cm−1, indicating the fingerprint of the β-glycosidic bond. Based on 1H and 13C NMR spectroscopy analysis, six unexchanged proton signals related to fructose as a forming monomer of levan were observed. Evaluation of levan’s antibacterial effect against two pathogenic bacteria, S. aureus (ATCC 33592) and E. coli (ATCC 25922), showed inhibition zones of 1 cm and 0.8 cm in diameter, respectively, with MICs of more than 256 μg mL−1 for both strains. Moreover, the antibiofilm property of the levan polymer was assessed and the results showed that the inhibition rate was positively proportional to the levan concentration, as the inhibition percentages were 50%, 29.4%, 29.4%, 26.5%, and 14.7% at concentrations of 2, 1, 0.5, 0.25, and 0.125 mg mL−1, respectively. Levan showed a significant role in burn healing properties since it accelerated the process of healing burn-induced areas in rats when compared with those either treated with normal saline or treated with the cream base only

    Bio_Fabricated Levan Polymer from <i>Bacillus subtilis</i> MZ292983.1 with Antibacterial, Antibiofilm, and Burn Healing Properties

    No full text
    The biopolymer levan has sparked a lot of interest in commercial production and various industrial applications. In this study, a bacterial isolate with promising levan-producing ability was isolated from a soil sample obtained from Princess Nourah bint Abdulrahman University in Saudi Arabia. The isolate has been identified and submitted to GenBank as Bacillus subtilis MZ292983.1. The bacterial levan polymer was extracted using ethyl alcohol (75%) and CaCl2 (1%) and then characterized using several approaches, such as Fourier transform infrared spectrometry and nuclear magnetic resonance. The IR spectrum of the levan polymer showed characteristic peaks confirming characteristics of polysaccharides, including a broad stretching peak of OH around 3417 cm−1 and aliphatic CH stretching was observed as two peaks at 2943, and 2885 cm−1. In addition, the FTIR spectrum featured an absorption at 2121 cm−1, indicating the fingerprint of the ÎČ-glycosidic bond. Based on 1H and 13C NMR spectroscopy analysis, six unexchanged proton signals related to fructose as a forming monomer of levan were observed. Evaluation of levan’s antibacterial effect against two pathogenic bacteria, S. aureus (ATCC 33592) and E. coli (ATCC 25922), showed inhibition zones of 1 cm and 0.8 cm in diameter, respectively, with MICs of more than 256 ÎŒg mL−1 for both strains. Moreover, the antibiofilm property of the levan polymer was assessed and the results showed that the inhibition rate was positively proportional to the levan concentration, as the inhibition percentages were 50%, 29.4%, 29.4%, 26.5%, and 14.7% at concentrations of 2, 1, 0.5, 0.25, and 0.125 mg mL−1, respectively. Levan showed a significant role in burn healing properties since it accelerated the process of healing burn-induced areas in rats when compared with those either treated with normal saline or treated with the cream base only

    Antileishmanial effect of silver nanoparticles: Green synthesis, characterization, in vivo and in vitro assessment

    No full text
    The drugs used to treat cutaneous leishmaniasis (CL) cannot effectively penetrate lesions. Nanogold and nanosilver have been used for treating or enhancing drug delivery in CL. The present study used Commiphora molmol (myrrh) to synthesize silver nanoparticles (MSNPs). The MSNPs were characterized using transmission electron microscopy and energy-dispersive spectroscopy. In addition, antiparasitic effect of myrrh silver nanoparticles (MSNPs) was assessed on Leishmania major both in vitro and in vivo. Five concentrations of MSNPs (10, 50, 80, 100, and 150 ÎŒl/100 ÎŒL) were used to study their effect on L. major cultures in vitro, and MSNPs were also applied topically to subcutaneous lesions in mice in vivo. The results showed that the MSNPs were 49.09 nm in size. MSNPs, showed a marked and significant (p ≀ 0.05) growth inhibition of L. major promastigotes which was concentration dependent. Overall, the higher concentrations (100, 150 ÎŒl/100 ÎŒL had a significantly greater inhibitory effect for the MSNPs in comparison to the chemical nanoparticles (CNPs) and pentostam at the same concentrations. Lesions healed completely in 21 d after MSNP treatment in vivo, while pentostam, a commercial drug, and CNPs showed a moderate healing effect on the lesions. Thus, MSNPs were more effective than pentostam and CNPs both in the in vivo and in vitro studies. MSNPs can therefore be promising candidates for various nanomedicine applications

    Genome-wide analysis and expression profiling of CalS genes in Glycine max revealed their role in development and salt stress

    No full text
    Abiotic stress affects plants' growth and development. Soybean is an important crop of the world, however, its production is affected by abiotic stresses. Callose Synthase is the most crucial enzyme response to environmental and developmental signals. However, in soybean, information on the callose synthase genes is limited. In this study, we analyzed the callose synthase gene family of soybean at the genome-wide scale. We also studied the genes positions, gene structure, evolutionary relations, miRNAs target sites, and expression of CalS genes. Resultantly 24 CalS genes were found in soybean, with diverse chromosomal locations, cis-acting elements, conserved motifs, and gene structures. Further, GmCalS genes were divided into four phylogenetic classes. The evolutionary classification of CalSs was supported by the motif and gene structure analyses. Phytohormones, abiotic stresses, and growth-responsive elements were identified in the promoter of GmCalSs. In addition, the GmCalS genes higher expression in roots, leaves, flowers, and nodules tissues provided their significance in development. Furthermore, the higher expression of GmCalS17 and GmCalS19 genes in response to salt stress indicated their importance against salt stress. These findings will be helpful for further investigation of the CalS genes in other crops

    Exploring Salinity Tolerance Mechanisms in Diverse Wheat Genotypes Using Physiological, Anatomical, Agronomic and Gene Expression Analyses

    No full text
    Salinity is a widespread abiotic stress that devastatingly impacts wheat growth and restricts its productivity worldwide. The present study is aimed at elucidating biochemical, physiological, anatomical, gene expression analysis, and agronomic responses of three diverse wheat genotypes to different salinity levels. A salinity treatment of 5000 and 7000 ppm gradually reduced photosynthetic pigments, anatomical root and leaf measurements and agronomic traits of all evaluated wheat genotypes (Ismailia line, Misr 1, and Misr 3). In addition, increasing salinity levels substantially decreased all anatomical root and leaf measurements except sclerenchyma tissue upper and lower vascular bundle thickness compared with unstressed plants. However, proline content in stressed plants was stimulated by increasing salinity levels in all evaluated wheat genotypes. Moreover, Na+ ions content and antioxidant enzyme activities in stressed leaves increased the high level of salinity in all genotypes. The evaluated wheat genotypes demonstrated substantial variations in all studied characters. The Ismailia line exhibited the uppermost performance in photosynthetic pigments under both salinity levels. Additionally, the Ismailia line was superior in the activity of superoxide dismutase (SOD), catalase activity (CAT), peroxidase (POX), and polyphenol oxidase (PPO) enzymes followed by Misr 1. Moreover, the Ismailia line recorded the maximum anatomical root and leaf measurements under salinity stress, which enhanced its tolerance to salinity stress. The Ismailia line and Misr 3 presented high up-regulation of H+ATPase, NHX2 HAK, and HKT genes in the root and leaf under both salinity levels. The positive physiological, anatomical, and molecular responses of the Ismailia line under salinity stress were reflected on agronomic performance and exhibited superior values of all evaluated agronomic traits

    Development of a Microbial-Assisted Process for Enhanced Astaxanthin Recovery from Crab Exoskeleton Waste

    No full text
    Astaxanthin is a xanthophyll carotenoid possessing impressive nutraceutical, antioxidant, and bioactive merits. Traditionally, astaxanthin is extracted from crustacean wastes via solvent extraction methods. However, the rigid structure of shells that comprise complex proteins and chitin challenges the extraction process. This investigation addressed an efficient microbial-assisted method to facilitate astaxanthin recovery from crab exoskeleton waste utilizing chitinolytic and proteolytic microorganisms. Herein, we evaluated the effect of pretreatment of the exoskeleton waste with a newly isolated probiotic strain, Bacillus amyloliquefaciens CPFD8, showing remarkable protease and chitinase activity and a proteolytic Saccharomyces cerevisiae 006-001 before solvent extraction, using acetone/hexane, on astaxanthin recovery. Furthermore, the antioxidant and anti-inflammatory activities of the recovered astaxanthin were inspected. Results revealed that both strains boosted the astaxanthin yield from the crab (Callinectes sapidus) exoskeleton compared with solvent extraction using acetone/hexane. Under optimum conditions, astaxanthin yield was 217 and 91 ”g/g crab exoskeleton in samples treated with B. amyloliquefaciens CPFD8 and S. cerevisiae 006-001, respectively. Interestingly, pretreatment of crab exoskeleton waste with B. amyloliquefaciens CPFD8 yielded more than 6-fold astaxanthin compared with the solvent extraction method that yielded just 35 ”g/g. This increase could be attributed to the proteolytic activity of B. amyloliquefaciens CPFD8 that rendered deproteinized shell chitin accessible to chitinase, facilitating the penetration of solvents and the recovery of astaxanthin. The recovered astaxanthin exhibited excellent antioxidant activity in scavenging DPPH or ABTS free radicals with IC50 values of 50.93 and 17.56 ”g/mL, respectively. In addition, the recovered astaxanthin showed a remarkable anti-inflammatory impact on LPS-induced murine macrophage RAW264.7 cells and significantly inhibited the production of nitric oxide, TNF-α, and IL-6 compared with the untreated control. These findings suggest the potential use of the developed microbial-assisted method utilizing chitinolytic and proteolytic B. amyloliquefaciens CPFD8 to maximize the recovery of bioactive astaxanthin from crab (C. sapidus) exoskeleton waste

    Resistomycin Suppresses Prostate Cancer Cell Growth by Instigating Oxidative Stress, Mitochondrial Apoptosis, and Cell Cycle Arrest

    No full text
    Globally, prostate cancer is among the most threatening and leading causes of death in men. This study, therefore, aimed to search for an ideal antitumor strategy with high efficacy, low drug resistance, and no or few adverse effects. Resistomycin is a natural antibiotic derived from marine actinomycetes, and it possesses various biological activities. Prostate cancer cells (PC3) were treated with resistomycin (IC12.5: 0.65 or IC25: 1.3 ”g/mL) or 5-fluorouracil (5-FU; IC25: 7 ”g/mL) for 24 h. MTT assay and flow cytometry were utilized to assess cell viability and apoptosis. Oxidative stress, apoptotic-related markers, and cell cycle were also assessed. The results revealed that the IC50 of resistomycin and 5-FU on PC3 cells were 2.63 ”g/mL and 14.44 ”g/mL, respectively. Furthermore, treated cells with the high dose of resistomycin showed an increased number of apoptotic cells compared to those treated with the lower dose. Remarkable induction of reactive oxygen species generation and lactate dehydrogenase (LDH) leakage with high malondialdehyde (MDA), carbonyl protein (CP), and 8-hydroxyguanosine (8-OHdG) contents were observed in resistomycin-treated cells. In addition, marked declines in glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in PC3 cells subjected to resistomycin therapy were observed. Resistomycin triggered observable cell apoptosis by increasing Bax, caspase-3, and cytosolic cytochrome c levels and decreasing Bcl-2 levels. In addition, notable downregulation of proliferating cell nuclear antigen (PCNA) and cyclin D1 was observed in resistomycin-treated cancerous cells. According to this evaluation, the antitumor potential of resistomycin, in a concentration-dependent manner, in prostate cancer cells was achieved by triggering oxidative stress, mitochondrial apoptosis, and cell cycle arrest in cancer cells. In conclusion, our investigation suggests that resistomycin can be considered a starting point for developing new chemotherapeutic agents for human prostate cancer

    Exploration of genes encoding KEGG pathway enzymes in rhizospheric microbiome of the wild plant Abutilon fruticosum

    No full text
    Abstract The operative mechanisms and advantageous synergies existing between the rhizobiome and the wild plant species Abutilon fruticosum were studied. Within the purview of this scientific study, the reservoir of genes in the rhizobiome, encoding the most highly enriched enzymes, was dominantly constituted by members of phylum Thaumarchaeota within the archaeal kingdom, phylum Proteobacteria within the bacterial kingdom, and the phylum Streptophyta within the eukaryotic kingdom. The ensemble of enzymes encoded through plant exudation exhibited affiliations with 15 crosstalking KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathways. The ultimate goal underlying root exudation, as surmised from the present investigation, was the biosynthesis of saccharides, amino acids, and nucleic acids, which are imperative for the sustenance, propagation, or reproduction of microbial consortia. The symbiotic companionship existing between the wild plant and its associated rhizobiome amplifies the resilience of the microbial community against adverse abiotic stresses, achieved through the orchestration of ABA (abscisic acid) signaling and its cascading downstream effects. Emergent from the process of exudation are pivotal bioactive compounds including ATP, D-ribose, pyruvate, glucose, glutamine, and thiamine diphosphate. In conclusion, we hypothesize that future efforts to enhance the growth and productivity of commercially important crop plants under both favorable and unfavorable environmental conditions may focus on manipulating plant rhizobiomes
    corecore