12 research outputs found

    Improving pain assessment in mice and rats with advanced videography and computational approaches

    Get PDF
    Accurately measuring pain in humans and rodents is essential to unravel the neurobiology of pain and discover effective pain therapeutics. However, given its inherently subjective nature, pain is nearly impossible to objectively assess. In the clinic, patients can articulate their pain experience using questionnaires and pain scales but self-reporting can be unreliable due to various psychological and social influences or difficulties for some patients to verbalize their experience (eg, infants, toddlers, and those with neurodevelopmental disorders). At the bench, these challenges are even more daunting as researchers rely on the behaviors of rodents to measure pain or pain relief. Given this, there is a growing realization among pain researchers, clinicians, and funding entities that these traditional approaches of assessing pain in rodents may be flawed. Importantly, these flaws may have contributed to several failed drugs that initially showed promise as analgesics and point toward inconsistencies in our understanding of basic pain neurobiology

    Intracellular lumen extension requires ERM-1-dependent apical membrane expansion and AQP-8-mediated flux

    Get PDF
    SUMMARY Many unicellular tubes such as capillaries form lumens intracellularly, a process that is not well understood. Here we show that the cortical membrane organizer ERM-1 is required to expand the intracellular apical/lumenal membrane and its actin undercoat during single-cell C.elegans excretory canal morphogenesis. We characterize AQP-8, identified in an ERM-1 overexpression (ERM-1[++]) suppressor screen, as a canalicular aquaporin that interacts with ERM-1 in lumen extension in a mercury-sensitive manner, implicating water-channel activity. AQP-8 is transiently recruited to the lumen by ERM-1, co-localizing in peri-lumenal cuffs interspaced along expanding canals. An ERM-1[++]-mediated increase in the number of lumen-associated canaliculi is reversed by AQP-8 depletion. We propose that the ERM-1-AQP-8 interaction propels lumen extension by translumenal flux, suggesting a direct morphogenetic effect of water-channel-regulated fluid pressure

    Asphaltene precipitation modeling in dead crude oils using scaling equations and non-scaling models: comparative study

    No full text
    Abstract This research study aims to conduct a comparative performance analysis of different scaling equations and non-scaling models used for modeling asphaltene precipitation. The experimental data used to carry out this study are taken from the published literature. Five scaling equations which include Rassamadana et al., Rassamdana and Sahimi, Hu and Gou, Ashoori et al., and log–log scaling equations were used and applied in two ways, i.e., on full dataset and partial datasets. Partial datasets are developed by splitting the full dataset in terms of Dilution ratio (R) between oil and precipitant. It was found that all scaling equations predict asphaltene weight percentage with reasonable accuracy (except Ashoori et al. scaling equation for full dataset) and their performance is further enhanced when applied on partial datasets. For the prediction of Critical dilution ratio (Rc) for different precipitants to detect asphaltene precipitation onset point, all scaling equations (except Ashoori et scaling equation when applied on partial datasets) are either unable to predict or produce results with significant error. Finally, results of scaling equations are compared with non-scaling model predictions which include PC-Saft, Flory–Huggins, and solid models. It was found that all scaling equations (except Ashoori et al. scaling equation for full dataset) either yield almost the same or improved results for asphaltene weight percentage when compared to best case (PC-Saft). However, for the prediction of Rc, Ashoori et al. scaling equation predicts more accurate results as compared to other non-scaling models
    corecore