43 research outputs found
FFCA: a feasibility-based method for flux coupling analysis of metabolic networks
<p>Abstract</p> <p>Background</p> <p>Flux coupling analysis (FCA) is a useful method for finding dependencies between fluxes of a metabolic network at steady-state. FCA classifies reactions into subsets (called coupled reaction sets) in which activity of one reaction implies activity of another reaction. Several approaches for FCA have been proposed in the literature.</p> <p>Results</p> <p>We introduce a new FCA algorithm, FFCA (Feasibility-based Flux Coupling Analysis), which is based on checking the feasibility of a system of linear inequalities. We show on a set of benchmarks that for genome-scale networks FFCA is faster than other existing FCA methods.</p> <p>Conclusions</p> <p>We present FFCA as a new method for flux coupling analysis and prove it to be faster than existing approaches. A corresponding software tool is freely available for non-commercial use at <url>http://www.bioinformatics.org/ffca/</url>.</p
KOALAB: A new method for regulatory motif search. Illustration on alternative splicing regulation in HIV-1
Discovering heterogeneous regulatory motifs remains a difficult problem in biological sequence analysis. In this context, statistical learning or pattern search techniques on their own have shown some limitations. However, significant benefits can be taken from their complementarity. We selected two state-of-the-art methods: a multi-class support vector machine (M-SVM) from the statistical learning domain associated with a performant discrete pattern matching algorithm grappe, and in- tegrated them into a web technology based graphical software: KOALAB (KOupled Algorithmic and Learning Approach for Biology)1 . We applied our method on motif discovery within nucleic acid sequences using experimental SELEX results as training database for the M-SVM. An application dealing with the search for splicing regulatory protein binding sites in HIV-1 genome shows the potential of such an approach
A distinct metabolic signature predicts development of fasting plasma glucose
ABSTRACT: BACKGROUND: High blood glucose and diabetes are amongst the conditions causing the greatest losses in years of healthy life worldwide. Therefore, numerous studies aim to identify reliable risk markers for development of impaired glucose metabolism and type 2 diabetes. However, the molecular basis of impaired glucose metabolism is so far insufficiently understood. The development of so called `omics' approaches in the recent years promises to identify molecular markers and to further understand the molecular basis of impaired glucose metabolism and type 2 diabetes. Although univariate statistical approaches are often applied, we demonstrate here that the application of multivariate statistical approaches is highly recommended to fully capture the complexity of data gained using high-throughput methods. METHODS: We took blood plasma samples from 172 subjects who participated in the prospective Metabolic Syndrome Berlin Potsdam follow-up study (MESY-BEPO Follow-up). We analysed these samples using Gas Chromatography coupled with Mass Spectrometry (GC-MS), and measured 286 metabolites. Furthermore, fasting glucose levels were measured using standard methods at baseline, and after an average of six years. We did correlation analysis and built linear regression models as well as Random Forest regression models to identify metabolites that predict the development of fasting glucose in our cohort. RESULTS: We found a metabolic pattern consisting of nine metabolites that predicted fasting glucose development with an accuracy of 0.47 in tenfold cross-validation using Random Forest regression. We also showed that adding established risk markers did not improve the model accuracy. However, external validation is eventually desirable. Although not all metabolites belonging to the final pattern are identified yet, the pattern directs attention to amino acid metabolism, energy metabolism and redox homeostasis. CONCLUSIONS: We demonstrate that metabolites identified using a high-throughput method (GC-MS) perform well in predicting the development of fasting plasma glucose over several years. Notably, not single, but a complex pattern of metabolites propels the prediction and therefore reflects the complexity of the underlying molecular mechanisms. This result could only be captured by application of multivariate statistical approaches. Therefore, we highly recommend the usage of statistical methods that seize the complexity of the information given by high-throughput methods
Seipin localizes at endoplasmic-reticulum-mitochondria contact sites to control mitochondrial calcium import and metabolism in adipocytes
Deficiency of the endoplasmic reticulum (ER) protein seipin results in generalized lipodystrophy by incompletely understood mechanisms. Here, we report mitochondrial abnormalities in seipin-deficient patient cells. A subset of seipin is enriched at ER-mitochondria contact sites (MAMs) in human and mouse cells and localizes in the vicinity of calcium regulators SERCA2, IP3R, and VDAC. Seipin association with MAM calcium regulators is stimulated by fasting-like stimuli, while seipin association with lipid droplets is promoted by lipid loading. Acute seipin removal does not alter ER calcium stores but leads to defective mitochondrial calcium import accompanied by a widespread reduction in Krebs cycle metabolites and ATP levels. In mice, inducible seipin deletion leads to mitochondrial dysfunctions preceding the development of metabolic complications. Together, these data suggest that seipin controls mitochondrial energy metabolism by regulating mitochondrial calcium influx at MAMs. In seipin-deficient adipose tissue, reduced ATP production compromises adipocyte properties, contributing to lipodystrophy pathogenesis.Peer reviewe
Plankton networks driving carbon export in the oligotrophic ocean
The biological carbon pump is the process by which CO 2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterized. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria and alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of a few bacterial and viral genes can predict a significant fraction of the variability in carbon export in these regions
Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks
International audienceIncreasing amounts of sequence data are becoming available for a wide range of non-model organisms. Investigating and modelling the metabolic behaviour of those organisms is highly relevant to understand their biology and ecology. As sequences are often incomplete and poorly annotated, draft networks of their metabolism largely suffer from incompleteness. Appropriate gap-filling methods to identify and add missing reactions are therefore required to address this issue. However, current tools rely on phenotypic or taxonomic information, or are very sensitive to the stoichiometric balance of metabolic reactions, especially concerning the co-factors. This type of information is often not available or at least prone to errors for newly-explored organisms. Here we introduce Meneco, a tool dedicated to the topological gap-filling of genome-scale draft metabolic networks. Meneco reformulates gap-filling as a qualitative combinatorial optimization problem, omitting constraints raised by the stoichiometry of a metabolic network considered in other methods, and solves this problem using Answer Set Programming. Run on several artificial test sets gathering 10,800 degraded Escherichia coli networks Meneco was able to efficiently identify essential reactions missing in networks at high degradation rates, outperforming the stoichiometry-based tools in scalability. To demonstrate the utility of Meneco we applied it to two case studies. Its application to recent metabolic networks reconstructed for the brown algal model Ectocarpus siliculosus and an associated bacterium Candidatus Phaeomarinobacter ectocarpi revealed several candidate metabolic pathways for algal-bacterial interactions. Then Meneco was used to reconstruct, from transcriptomic and metabolomic data, the first metabolic network for the microalga Euglena mutabilis. These two case studies show that Meneco is a versatile tool to complete draft genome-scale metabolic networks produced from heterogeneous data, and to suggest relevant reactions that explain the metabolic capacity of a biological system
Neue Konzepte und Werkzeuge in der constraintbasierten Analyse metabolischer Netzwerke
Constraint-based approaches have proved successful in analyzing complex
metabolic networks. They restrict the range of all possible behaviors that a
metabolic system can display under governing constraints. The set of all
possible flux distributions over a metabolic network at steady state defines a
polyhedral cone, the steady-state flux cone. This cone can be analyzed using
an inner description, based on sets of generating vectors such as elementary
modes or extreme pathways. We present a new constraint-based approach to
metabolic network analysis, characterizing a metabolic network by its minimal
metabolic behaviors and the reversible metabolic space. Our method uses an
outer description of the flux cone, based on sets of non-negativity
constraints. The resulting description is minimal and unique. We then study
the relationship between inner and outer descriptions of the cone. We give a
generic procedure to show how inner descriptions can be computed from the
outer one. We use this procedure to explain why the size of the inner
descriptions may be several orders of magnitude larger than that of the outer
description. Our approach suggests a refined classification of reactions
according to their reversibility type (irreversible, pseudo-irreversible, and
fully reversible). Using these concepts, we improve an existing algorithm for
identifying blocked and coupled reactions and devise a new algorithm for flux
coupling analysis. We extend this analysis by introducing minimal direction
cuts (MDCs) which prevent a target reaction from being performed in an
undesired direction. We develop an algorithm which allows not only for
computing MDCs in a metabolic network, but also for a direct calculation of
minimal cut sets (MCSs). Based on our refined classification of reactions, we
also provide a constraint-based approach for analyzing the changes in the
overall capabilities of a metabolic network following a gene deletion. Flux
coupling and gene deletion analysis help for identifying important reactions
in metabolic networks. Alternatively, the essentiality of reactions can be
assessed using control-effective flux (CEF) analysis, which is based on
elementary modes. We compare CEF analysis with the use of a minimal generating
set of the flux cone to elucidate crucial reactions.In der Analyse metabolischer Netzwerke haben constraintbasierte AnsÀtze
erfolgreiche Anwendung gefunden. Hierbei wird der Bereich des möglichen
Verhaltens eines metabolischen Systems durch zusÀtzliche Anforderungen an das
System eingeschrÀnkt. Die resultierende Menge aller Flussverteilungen eines
metabolischen Netzwerks im stationÀren Zustand hat die Gestalt eines
polyedrischen Kegels, welcher Flusskegel genannt wird. Eine innere
Beschreibung dieses Kegels basierend auf Mengen erzeugender Vektoren, wie etwa
Elementarmodi oder Extremalpfade, ermöglicht eine effiziente Analyse. Wir
haben einen neuen constraintbasierten Ansatz zur Analyse metabolischer
Netzwerke entwickelt, in dem das System durch minimale metabolische
Verhaltensmuster und den reversiblen metabolischen Raum charakterisiert wird.
In unserer Methode kommt eine Ă€uĂere Beschreibung des Flusskegels zur
Anwendung, die wir durch Ausnutzung von Nicht-NegativitÀts-Bedingungen
erhalten. Diese Beschreibung ist minimal und eindeutig. Wir untersuchen die
Beziehung zwischen innerer und Ă€uĂerer Beschreibung des Kegels und stellen ein
allgemeines Verfahren zur Herleitung der inneren aus der Ă€uĂeren Beschreibung
vor. Dieses Verfahren verdeutlicht, warum die Ă€uĂere im Vergleich zur inneren
Beschreibung eine meist sehr viel kompaktere, sogar bis zu mehreren
GröĂenordungen kleinere Darstellung liefert. In unserem Ansatz verwenden wir
eine verfeinerte Klassifikation von Reaktionen des metabolischen Netzwerks
entsprechend ihres ReversibilitÀts-Typus (irreversibel, pseudo-irreversibel
und vollstÀndig reversibel). Diese Einteilung ermöglicht uns eine deutliche
Verbesserung existierender Algorithmen zur Bestimmung von blockierten und
gekoppelten Reaktionen und die Formulierung eines neuen, effizienten
Algorithmus fĂŒr die Flusskopplungsanalyse. Die von uns eingefĂŒhrten minimalen
gerichteten Schnitte (MDCs), die die AusfĂŒhrung einer Zielreaktion in eine
ungewĂŒnschte Richtung verhindern, erweitern die klassische
Flusskopplungsanalyse. Ein von uns entwickelter Algorithmus ermöglicht nicht
nur die Berechnung von MDCs in einem metabolischen Netzwerk, sondern auch die
direkte Ermittlung minimaler Schnittmengen (MCSs). Basierend auf unserer
verfeinerten Klassifizierung von Reaktionen stellen wir schlieĂlich einen
constraintbasierten Ansatz zur Analyse der durch Gen-Ausfall ausgelösten
BeeintrÀchtigungen globaler FÀhigkeiten eines metabolischen Netzwerks vor.
Flusskopplungs- und Gen-Ausfall-Analyse helfen bei der Identifikation
essentieller Reaktionen im metabolischen System. Altenativ kann die Bedeutung
von Reaktionen fĂŒr die Netzwerkfunktionen mittels auf Elementarmodi
basierender control-effective Fluss-Analyse (CEF) bewertet werden. Wir
vergleichen CEF-Analyse mit der Verwendung eines minimalen Erzeugendensystems
fĂŒr die Bestimmung von SchlĂŒsselreaktionen
Analyse de voies métaboliques en programmation par contraintes
Stage de DEA. Rapport de stage.L'analyse des voies mĂ©taboliques dĂ©termine les voies caractĂ©ristiques permettant de dĂ©crire Ă elles seules toutes les distributions de flux possibles dans un rĂ©seau mĂ©tabolique. Ces voies caractĂ©ristiques sont les rayons extrĂȘmes d'un cĂŽne convexe reprĂ©sentant l'espace des flux qui vĂ©rifient les contraintes stoechiomĂ©triques du systĂšme. Diverses approches ont rĂ©cemment Ă©tĂ© dĂ©veloppĂ©es pour dĂ©terminer ces voies particuliĂšres. Cependant, leur recherche occasionne une explosion combinatoire dans le cas de systĂšmes biologiques rĂ©els. Pour pallier Ă ce problĂšme, cette Ă©tude propose d'amĂ©liorer la formalisation du rĂ©seau mĂ©tabolique. Cela permet de dĂ©terminer un ensemble minimale des voies mĂ©taboliques caractĂ©ristiques dites gĂ©nĂ©riques. Ces derniĂšres dĂ©crivent l'ensemble des comportements possibles d'un systĂšme vivant. Pour ce problĂšme mieux formalisĂ©, il est alors possible d'utiliser la mĂ©thode de la double description qui est plus performante que les algorithmes standards pour calculer les rayons extrĂȘmes. || Metabolic pathways analysis determine the characteristic pathways which describes by themselves all the possible flux in a metabolic network. Those pathways correspond to the extrem rays of a convex cone which include all the flux verifying the stoichiom