4 research outputs found

    LM-CPPF: Paraphrasing-Guided Data Augmentation for Contrastive Prompt-Based Few-Shot Fine-Tuning

    Full text link
    In recent years, there has been significant progress in developing pre-trained language models for NLP. However, these models often struggle when fine-tuned on small datasets. To address this issue, researchers have proposed various adaptation approaches. Prompt-based tuning is arguably the most common way, especially for larger models. Previous research shows that adding contrastive learning to prompt-based fine-tuning is effective as it helps the model generate embeddings that are more distinguishable between classes, and it can also be more sample-efficient as the model learns from positive and negative examples simultaneously. One of the most important components of contrastive learning is data augmentation, but unlike computer vision, effective data augmentation for NLP is still challenging. This paper proposes LM-CPPF, Contrastive Paraphrasing-guided Prompt-based Fine-tuning of Language Models, which leverages prompt-based few-shot paraphrasing using generative language models, especially large language models such as GPT-3 and OPT-175B, for data augmentation. Our experiments on multiple text classification benchmarks show that this augmentation method outperforms other methods, such as easy data augmentation, back translation, and multiple templates.Comment: 10 pages, 1 figure, 8 tables, 1 algorithm Proceedings of the 61st Annual Meeting of the Association for Computational Linguistic

    Automatic Speech Recognition for Speech Assessment of Persian Preschool Children

    Full text link
    Preschool evaluation is crucial because it gives teachers and parents influential knowledge about children's growth and development. The COVID-19 pandemic has highlighted the necessity of online assessment for preschool children. One of the areas that should be tested is their ability to speak. Employing an Automatic Speech Recognition(ASR) system is useless since they are pre-trained on voices that are different from children's voices in terms of frequency and amplitude. We constructed an ASR for our cognitive test system to solve this issue using the Wav2Vec 2.0 model with a new pre-training objective called Random Frequency Pitch(RFP). In addition, we used our new dataset to fine-tune our model for Meaningless Words(MW) and Rapid Automatic Naming(RAN) tests. Our new approach reaches a Word Error Rate(WER) of 6.45 on the Persian section of the CommonVoice dataset. Furthermore, our novel methodology produces positive outcomes in zero- and few-shot scenarios.Comment: 8 pages, 5 figures, 4 tables, 1 algorith

    PEACH: Pre-Training Sequence-to-Sequence Multilingual Models for Translation with Semi-Supervised Pseudo-Parallel Document Generation

    Full text link
    Multilingual pre-training significantly improves many multilingual NLP tasks, including machine translation. Most existing methods are based on some variants of masked language modeling and text-denoising objectives on monolingual data. Multilingual pre-training on monolingual data ignores the availability of parallel data in many language pairs. Also, some other works integrate the available human-generated parallel translation data in their pre-training. This kind of parallel data is definitely helpful, but it is limited even in high-resource language pairs. This paper introduces a novel semi-supervised method, SPDG, that generates high-quality pseudo-parallel data for multilingual pre-training. First, a denoising model is pre-trained on monolingual data to reorder, add, remove, and substitute words, enhancing the pre-training documents' quality. Then, we generate different pseudo-translations for each pre-training document using dictionaries for word-by-word translation and applying the pre-trained denoising model. The resulting pseudo-parallel data is then used to pre-train our multilingual sequence-to-sequence model, PEACH. Our experiments show that PEACH outperforms existing approaches used in training mT5 and mBART on various translation tasks, including supervised, zero- and few-shot scenarios. Moreover, PEACH's ability to transfer knowledge between similar languages makes it particularly useful for low-resource languages. Our results demonstrate that with high-quality dictionaries for generating accurate pseudo-parallel, PEACH can be valuable for low-resource languages.Comment: 15 pages, 5 figures, 16 tables, 1 algorithm, LoResMT@EACL 202

    UTNLP at SemEval-2022 Task 6: A Comparative Analysis of Sarcasm Detection Using Generative-based and Mutation-based Data Augmentation

    Full text link
    Sarcasm is a term that refers to the use of words to mock, irritate, or amuse someone. It is commonly used on social media. The metaphorical and creative nature of sarcasm presents a significant difficulty for sentiment analysis systems based on affective computing. The methodology and results of our team, UTNLP, in the SemEval-2022 shared task 6 on sarcasm detection are presented in this paper. We put different models, and data augmentation approaches to the test and report on which one works best. The tests begin with traditional machine learning models and progress to transformer-based and attention-based models. We employed data augmentation based on data mutation and data generation. Using RoBERTa and mutation-based data augmentation, our best approach achieved an F1-sarcastic of 0.38 in the competition's evaluation phase. After the competition, we fixed our model's flaws and achieved an F1-sarcastic of 0.414.Comment: 6 pages, 2 figures, International Workshop on Semantic Evaluation co-located with NAAC
    corecore