12 research outputs found

    Supramolecular assemblies from amphiphilic homopolymers: Testing the scope

    No full text
    It has been shown by us in a recent communication that homopolymers, in which each repeat unit contains a hydrophilic and a hydrophobic head group, are capable of forming environment-dependent micellar or inverse micellar assemblies. A systematic structure−property relationship study is carried out here to test the scope of the design. We show here that the molecular design is indeed broadly applicable and that there is a significant gain in the critical aggregation concentrations of these polymers, as compared to the small molecule counterparts. We also show that the design can be tuned to achieve vesicle-type assemblies, which further expands the repertoire of amphiphilic homopolymers in a variety of areas. Characterizations of these assemblies have been carried out using transmission electron microscopy, dynamic light scattering, static light scattering, and dye incorporation experiments

    Smaller building blocks form larger assemblies: Aggregation Behavior of biaryl-based dendritic facial amphiphiles

    No full text
    Synthesis and micellar behavior of biaryl-based benzyl ether dendritic molecules prepared from a new biaryl building block are described. The key objective of the study is to tune the size of individual dendritic molecules and investigate its effect on aggregation behavior of the resulting micelle-like assemblies. We show that the functional group placement in the building block influences flexibility of the dendritic backbone and interior volume available for packing the hydrophobic groups, which is reflected in different aggregation behavior and aggregate size of the two types of micellar assemblies
    corecore