116 research outputs found
Coordinated modular functionality and prognostic potential of a heart failure biomarker-driven interaction network
<p>Abstract</p> <p>Background</p> <p>The identification of potentially relevant biomarkers and a deeper understanding of molecular mechanisms related to heart failure (HF) development can be enhanced by the implementation of biological network-based analyses. To support these efforts, here we report a global network of protein-protein interactions (PPIs) relevant to HF, which was characterized through integrative bioinformatic analyses of multiple sources of "omic" information.</p> <p>Results</p> <p>We found that the structural and functional architecture of this PPI network is highly modular. These network modules can be assigned to specialized processes, specific cellular regions and their functional roles tend to partially overlap. Our results suggest that HF biomarkers may be defined as key coordinators of intra- and inter-module communication. Putative biomarkers can, in general, be distinguished as "information traffic" mediators within this network. The top high traffic proteins are encoded by genes that are not highly differentially expressed across HF and non-HF patients. Nevertheless, we present evidence that the integration of expression patterns from high traffic genes may support accurate prediction of HF. We quantitatively demonstrate that intra- and inter-module functional activity may be controlled by a family of transcription factors known to be associated with the prevention of hypertrophy.</p> <p>Conclusion</p> <p>The systems-driven analysis reported here provides the basis for the identification of potentially novel biomarkers and understanding HF-related mechanisms in a more comprehensive and integrated way.</p
Predictive integration of gene functional similarity and co-expression defines treatment response of endothelial progenitor cells
<p>Abstract</p> <p>Background</p> <p>Endothelial progenitor cells (EPCs) have been implicated in different processes crucial to vasculature repair, which may offer the basis for new therapeutic strategies in cardiovascular disease. Despite advances facilitated by functional genomics, there is a lack of systems-level understanding of treatment response mechanisms of EPCs. In this research we aimed to characterize the EPCs response to adenosine (Ado), a cardioprotective factor, based on the systems-level integration of gene expression data and prior functional knowledge. Specifically, we set out to identify novel biosignatures of Ado-treatment response in EPCs.</p> <p>Results</p> <p>The predictive integration of gene expression data and standardized functional similarity information enabled us to identify new treatment response biosignatures. Gene expression data originated from Ado-treated and -untreated EPCs samples, and functional similarity was estimated with Gene Ontology (GO)-based similarity information. These information sources enabled us to implement and evaluate an integrated prediction approach based on the concept of <it>k</it>-nearest neighbours learning (<it>k</it>NN). The method can be executed by expert- and data-driven input queries to guide the search for biologically meaningful biosignatures. The resulting <it>integrated kNN </it>system identified new candidate EPC biosignatures that can offer high classification performance (areas under the operating characteristic curve > 0.8). We also showed that the proposed models can outperform those discovered by standard gene expression analysis. Furthermore, we report an initial independent <it>in vitro </it>experimental follow-up, which provides additional evidence of the potential validity of the top biosignature.</p> <p>Conclusion</p> <p>Response to Ado treatment in EPCs can be accurately characterized with a new method based on the combination of gene co-expression data and GO-based similarity information. It also exploits the incorporation of human expert-driven queries as a strategy to guide the automated search for candidate biosignatures. The proposed biosignature improves the systems-level characterization of EPCs. The new integrative predictive modeling approach can also be applied to other phenotype characterization or biomarker discovery problems.</p
Transforming growth factor β receptor 1 is a new candidate prognostic biomarker after acute myocardial infarction
<p>Abstract</p> <p>Background</p> <p>Prediction of left ventricular (LV) remodeling after acute myocardial infarction (MI) is clinically important and would benefit from the discovery of new biomarkers.</p> <p>Methods</p> <p>Blood samples were obtained upon admission in patients with acute ST-elevation MI who underwent primary percutaneous coronary intervention. Messenger RNA was extracted from whole blood cells. LV function was evaluated by echocardiography at 4-months.</p> <p>Results</p> <p>In a test cohort of 32 MI patients, integrated analysis of microarrays with a network of protein-protein interactions identified subgroups of genes which predicted LV dysfunction (ejection fraction ≤ 40%) with areas under the receiver operating characteristic curve (AUC) above 0.80. Candidate genes included transforming growth factor beta receptor 1 (TGFBR1). In a validation cohort of 115 MI patients, TGBFR1 was up-regulated in patients with LV dysfunction (P < 0.001) and was associated with LV function at 4-months (P = 0.003). TGFBR1 predicted LV function with an AUC of 0.72, while peak levels of troponin T (TnT) provided an AUC of 0.64. Adding TGFBR1 to the prediction of TnT resulted in a net reclassification index of 8.2%. When added to a mixed clinical model including age, gender and time to reperfusion, TGFBR1 reclassified 17.7% of misclassified patients. TGFB1, the ligand of TGFBR1, was also up-regulated in patients with LV dysfunction (P = 0.004), was associated with LV function (P = 0.006), and provided an AUC of 0.66. In the rat MI model induced by permanent coronary ligation, the TGFB1-TGFBR1 axis was activated in the heart and correlated with the extent of remodeling at 2 months.</p> <p>Conclusions</p> <p>We identified TGFBR1 as a new candidate prognostic biomarker after acute MI.</p
NEON terrestrial field observations: designing continental-scale, standardized sampling.
Rapid changes in climate and land use and the resulting shifts in species distributions and ecosystem functions have motivated the development of the National Ecological Observatory Network (NEON). Integrating across spatial scales from ground sampling to remote sensing, NEON will provide data for users to address ecological responses to changes in climate, land use, and species invasion across the United States for at least 30 years. Although NEON remote sensing and tower sensor elements are relatively well known, the biological measurements are not. This manuscript describes NEON terrestrial sampling, which targets organisms across a range of generation and turnover times, and a hierarchy of measurable biological states. Measurements encompass species diversity, abundance, phenology, demography, infectious disease, ecohydrology, and biogeochemistry. The continental-scale sampling requires collection of comparable and calibrated data using transparent methods. Data will be publicly available in a variety of formats and suitable for integration with other long-term efforts. NEON will provide users with the data necessary to address large-scale questions, challenge current ecological paradigms, and forecast ecological change
Metrics for GO based protein semantic similarity: a systematic evaluation
<p>Abstract</p> <p>Background</p> <p>Several semantic similarity measures have been applied to gene products annotated with Gene Ontology terms, providing a basis for their functional comparison. However, it is still unclear which is the best approach to semantic similarity in this context, since there is no conclusive evaluation of the various measures. Another issue, is whether electronic annotations should or not be used in semantic similarity calculations.</p> <p>Results</p> <p>We conducted a systematic evaluation of GO-based semantic similarity measures using the relationship with sequence similarity as a means to quantify their performance, and assessed the influence of electronic annotations by testing the measures in the presence and absence of these annotations. We verified that the relationship between semantic and sequence similarity is not linear, but can be well approximated by a rescaled Normal cumulative distribution function. Given that the majority of the semantic similarity measures capture an identical behaviour, but differ in resolution, we used the latter as the main criterion of evaluation.</p> <p>Conclusions</p> <p>This work has provided a basis for the comparison of several semantic similarity measures, and can aid researchers in choosing the most adequate measure for their work. We have found that the hybrid <it>simGIC</it> was the measure with the best overall performance, followed by Resnik's measure using a best-match average combination approach. We have also found that the average and maximum combination approaches are problematic since both are inherently influenced by the number of terms being combined. We suspect that there may be a direct influence of data circularity in the behaviour of the results including electronic annotations, as a result of functional inference from sequence similarity.</p
Integrated Ugi-Based Assembly of Functionally, Skeletally, and Stereochemically Diverse 1,4-Benzodiazepin-2-ones
A practical, integrated and versatile U-4CR-based assembly of 1,4-benzodiazepin-2-ones exhibiting functionally, skeletally, and stereochemically diverse substitution patterns is described. By virtue of its convergence, atom economy, and bond-forming efficiency, the methodology documented herein exemplifies the reconciliation of structural complexity and experimental simplicity in the context of medicinal chemistry projects.This work was financially supported by the Galician Government (Spain), Projects: 09CSA016234PR and GPC-2014-PG037. J.A. thanks FUNDAYACUCHO (Venezuela) for a predoctoral grant and Deputación da Coruña (Spain) for a postdoctoral research grant. A.N.-V. thanks the Spanish government for a Ramón y Cajal research contract
GEPAS, a web-based tool for microarray data analysis and interpretation
Gene Expression Profile Analysis Suite (GEPAS) is one of the most complete and extensively used web-based packages for microarray data analysis. During its more than 5 years of activity it has continuously been updated to keep pace with the state-of-the-art in the changing microarray data analysis arena. GEPAS offers diverse analysis options that include well established as well as novel algorithms for normalization, gene selection, class prediction, clustering and functional profiling of the experiment. New options for time-course (or dose-response) experiments, microarray-based class prediction, new clustering methods and new tests for differential expression have been included. The new pipeliner module allows automating the execution of sequential analysis steps by means of a simple but powerful graphic interface. An extensive re-engineering of GEPAS has been carried out which includes the use of web services and Web 2.0 technology features, a new user interface with persistent sessions and a new extended database of gene identifiers. GEPAS is nowadays the most quoted web tool in its field and it is extensively used by researchers of many countries and its records indicate an average usage rate of 500 experiments per day. GEPAS, is available at http://www.gepas.org
A transversal approach to predict gene product networks from ontology-based similarity
<p>Abstract</p> <p>Background</p> <p>Interpretation of transcriptomic data is usually made through a "standard" approach which consists in clustering the genes according to their expression patterns and exploiting Gene Ontology (GO) annotations within each expression cluster. This approach makes it difficult to underline functional relationships between gene products that belong to different expression clusters. To address this issue, we propose a transversal analysis that aims to predict functional networks based on a combination of GO processes and data expression.</p> <p>Results</p> <p>The transversal approach presented in this paper consists in computing the semantic similarity between gene products in a Vector Space Model. Through a weighting scheme over the annotations, we take into account the representativity of the terms that annotate a gene product. Comparing annotation vectors results in a matrix of gene product similarities. Combined with expression data, the matrix is displayed as a set of functional gene networks. The transversal approach was applied to 186 genes related to the enterocyte differentiation stages. This approach resulted in 18 functional networks proved to be biologically relevant. These results were compared with those obtained through a standard approach and with an approach based on information content similarity.</p> <p>Conclusion</p> <p>Complementary to the standard approach, the transversal approach offers new insight into the cellular mechanisms and reveals new research hypotheses by combining gene product networks based on semantic similarity, and data expression.</p
Analysis and Computational Dissection of Molecular Signature Multiplicity
Molecular signatures are computational or mathematical models created to diagnose disease and other phenotypes and to predict clinical outcomes and response to treatment. It is widely recognized that molecular signatures constitute one of the most important translational and basic science developments enabled by recent high-throughput molecular assays. A perplexing phenomenon that characterizes high-throughput data analysis is the ubiquitous multiplicity of molecular signatures. Multiplicity is a special form of data analysis instability in which different analysis methods used on the same data, or different samples from the same population lead to different but apparently maximally predictive signatures. This phenomenon has far-reaching implications for biological discovery and development of next generation patient diagnostics and personalized treatments. Currently the causes and interpretation of signature multiplicity are unknown, and several, often contradictory, conjectures have been made to explain it. We present a formal characterization of signature multiplicity and a new efficient algorithm that offers theoretical guarantees for extracting the set of maximally predictive and non-redundant signatures independent of distribution. The new algorithm identifies exactly the set of optimal signatures in controlled experiments and yields signatures with significantly better predictivity and reproducibility than previous algorithms in human microarray gene expression datasets. Our results shed light on the causes of signature multiplicity, provide computational tools for studying it empirically and introduce a framework for in silico bioequivalence of this important new class of diagnostic and personalized medicine modalities
- …