21 research outputs found

    Viral Capsid Is a Pathogen-Associated Molecular Pattern in Adenovirus Keratitis

    Get PDF
    Human adenovirus (HAdV) infection of the human eye, in particular serotypes 8, 19 and 37, induces the formation of corneal subepithelial leukocytic infiltrates. Using a unique mouse model of adenovirus keratitis, we studied the role of various virus-associated molecular patterns in subsequent innate immune responses of resident corneal cells to HAdV-37 infection. We found that neither viral DNA, viral gene expression, or viral replication was necessary for the development of keratitis. In contrast, empty viral capsid induced keratitis and a chemokine profile similar to intact virus. Transfected viral DNA did not induce leukocyte infiltration despite CCL2 expression similar to levels in virus infected corneas. Mice without toll-like receptor 9 (Tlr9) signaling developed clinical keratitis upon HAdV-37 infection similar to wild type mice, although the absolute numbers of activated monocytes in the cornea were less in Tlr9βˆ’/βˆ’ mice. Virus induced leukocytic infiltrates and chemokine expression in mouse cornea could be blocked by treatment with a peptide containing arginine glycine aspartic acid (RGD). These results demonstrate that adenovirus infection of the cornea induces chemokine expression and subsequent infiltration by leukocytes principally through RGD contact between viral capsid and the host cell, possibly through direct interaction between the viral capsid penton base and host cell integrins

    Corneal Transduction by Intra-Stromal Injection of AAV Vectors In Vivo in the Mouse and Ex Vivo in Human Explants

    Get PDF
    The cornea is a transparent, avascular tissue that acts as the major refractive surface of the eye. Corneal transparency, assured by the inner stroma, is vital for this role. Disruption in stromal transparency can occur in some inherited or acquired diseases. As a consequence, light entering the eye is blocked or distorted, leading to decreased visual acuity. Possible treatment for restoring transparency could be via viral-based gene therapy. The stroma is particularly amenable to this strategy due to its immunoprivileged nature and low turnover rate. We assayed the potential of AAV vectors to transduce keratocytes following intra-stromal injection in vivo in the mouse cornea and ex vivo in human explants. In murine and human corneas, we transduced the entire stroma using a single injection, preferentially targeted keratocytes and achieved long-term gene transfer (up to 17 months in vivo in mice). Of the serotypes tested, AAV2/8 was the most promising for gene transfer in both mouse and man. Furthermore, transgene expression could be transiently increased following aggression to the cornea

    Ocular Delivery of Compacted DNA-Nanoparticles Does Not Elicit Toxicity in the Mouse Retina

    Get PDF
    Subretinal delivery of polyethylene glycol-substituted lysine peptide (CK30PEG)-compacted DNA nanoparticles results in efficient gene expression in retinal cells. This work evaluates the ocular safety of compacted DNA nanoparticles. CK30PEG-compacted nanoparticles containing an EGFP expression plasmid were subretinally injected in adult mice (1 Β΅l at 0.3, 1.0 and 3.0 Β΅g/Β΅l). Retinas were examined for signs of inflammation at 1, 2, 4 and 7 days post-injection. Neither infiltration of polymorphonuclear neutrophils or lymphocytes was detected in retinas. In addition, elevation of macrophage marker F4/80 or myeloid marker myeloperoxidase was not detected in the injected eyes. The chemokine KC mRNA increased 3–4 fold in eyes injected with either nanoparticles or saline at 1 day post-injection, but returned to control levels at 2 days post-injection. No elevation of KC protein was observed in these mice. The monocyte chemotactic protein-1, increased 3–4 fold at 1 day post-injection for both nanoparticle and saline injected eyes, but also returned to control levels at 2 days. No elevations of tumor necrosis factor alpha mRNA or protein were detected. These investigations show no signs of local inflammatory responses associated with subretinal injection of compacted DNA nanoparticles, indicating that the retina may be a suitable target for clinical nanoparticle-based interventions

    Pseudomonas aeruginosa PilY1 Binds Integrin in an RGD- and Calcium-Dependent Manner

    Get PDF
    PilY1 is a type IV pilus (tfp)-associated protein from the opportunistic pathogen Pseudomonas aeruginosa that shares functional similarity with related proteins in infectious Neisseria and Kingella species. Previous data have shown that PilY1 acts as a calcium-dependent pilus biogenesis factor necessary for twitching motility with a specific calcium binding site located at amino acids 850–859 in the 1,163 residue protein. In addition to motility, PilY1 is also thought to play an important role in the adhesion of P. aeruginosa tfp to host epithelial cells. Here, we show that PilY1 contains an integrin binding arginine-glycine-aspartic acid (RGD) motif located at residues 619–621 in the PilY1 from the PAK strain of P. aeruginosa; this motif is conserved in the PilY1s from the other P. aeruginosa strains of known sequence. We demonstrate that purified PilY1 binds integrin in vitro in an RGD-dependent manner. Furthermore, we identify a second calcium binding site (amino acids 600–608) located ten residues upstream of the RGD. Eliminating calcium binding from this site using a D608A mutation abolished integrin binding; in contrast, a calcium binding mimic (D608K) preserved integrin binding. Finally, we show that the previously established PilY1 calcium binding site at 851–859 also impacts the protein's association with integrin. Taken together, these data indicate that PilY1 binds to integrin in an RGD- and calcium-dependent manner in vitro. As such, P. aeruginosa may employ these interactions to mediate host epithelial cell binding in vivo
    corecore