244 research outputs found
Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes
Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable
Supporting self-regulated learning
Self-regulated learning (SRL) competences are crucial for lifelong learning. Their cultivation requires the right balance between freedom and guidance during the learning processes. Current learning systems and approaches, such as personal learning environments, give overwhelming freedom, but also let weak learners alone. Other systems, such as learning management systems or adaptive systems, tend to institutionalise learners too much, which does not support the development of SRL competences. This chapter presents possibilities and approaches to support SRL by the use of technology. After discussing the theoretical background of SRL and related technologies, a formal framework is presented that describes the SRL process, related competences, and guidelines. Furthermore, a variety of methods is presented, how learners can be supported to learn in a self-regulated way
Measurement of the Forward-Backward Asymmetry in the B -> K(*) mu+ mu- Decay and First Observation of the Bs -> phi mu+ mu- Decay
We reconstruct the rare decays , , and in a data sample
corresponding to collected in collisions at
by the CDF II detector at the Fermilab Tevatron
Collider. Using and decays we report the branching ratios. In addition, we report
the measurement of the differential branching ratio and the muon
forward-backward asymmetry in the and decay modes, and the
longitudinal polarization in the decay mode with respect to the squared
dimuon mass. These are consistent with the theoretical prediction from the
standard model, and most recent determinations from other experiments and of
comparable accuracy. We also report the first observation of the {\mathcal{B}}(B^0_s \to
\phi\mu^+\mu^-) = [1.44 \pm 0.33 \pm 0.46] \times 10^{-6}27 \pm 6B^0_s$ decay observed.Comment: 7 pages, 2 figures, 3 tables. Submitted to Phys. Rev. Let
Localising the auditory N1m with event-related beamformers:localisation accuracy following bilateral and unilateral stimulation
The auditory evoked N1m-P2m response complex presents a challenging case for MEG source-modelling, because symmetrical, phase-locked activity occurs in the hemispheres both contralateral and ipsilateral to stimulation. Beamformer methods, in particular, can be susceptible to localisation bias and spurious sources under these conditions. This study explored the accuracy and efficiency of event-related beamformer source models for auditory MEG data under typical experimental conditions: monaural and diotic stimulation; and whole-head beamformer analysis compared to a half-head analysis using only sensors from the hemisphere contralateral to stimulation. Event-related beamformer localisations were also compared with more traditional single-dipole models. At the group level, the event-related beamformer performed equally well as the single-dipole models in terms of accuracy for both the N1m and the P2m, and in terms of efficiency (number of successful source models) for the N1m. The results yielded by the half-head analysis did not differ significantly from those produced by the traditional whole-head analysis. Any localisation bias caused by the presence of correlated sources is minimal in the context of the inter-individual variability in source localisations. In conclusion, event-related beamformers provide a useful alternative to equivalent-current dipole models in localisation of auditory evoked responses
Search for a New Heavy Gauge Boson Wprime with Electron + missing ET Event Signature in ppbar collisions at sqrt(s)=1.96 TeV
We present a search for a new heavy charged vector boson decaying
to an electron-neutrino pair in collisions at a center-of-mass
energy of 1.96\unit{TeV}. The data were collected with the CDF II detector
and correspond to an integrated luminosity of 5.3\unit{fb}^{-1}. No
significant excess above the standard model expectation is observed and we set
upper limits on . Assuming standard
model couplings to fermions and the neutrino from the boson decay to
be light, we exclude a boson with mass less than
1.12\unit{TeV/}c^2 at the 95\unit{%} confidence level.Comment: 7 pages, 2 figures Submitted to PR
Measurements of the properties of Lambda_c(2595), Lambda_c(2625), Sigma_c(2455), and Sigma_c(2520) baryons
We report measurements of the resonance properties of Lambda_c(2595)+ and
Lambda_c(2625)+ baryons in their decays to Lambda_c+ pi+ pi- as well as
Sigma_c(2455)++,0 and Sigma_c(2520)++,0 baryons in their decays to Lambda_c+
pi+/- final states. These measurements are performed using data corresponding
to 5.2/fb of integrated luminosity from ppbar collisions at sqrt(s) = 1.96 TeV,
collected with the CDF II detector at the Fermilab Tevatron. Exploiting the
largest available charmed baryon sample, we measure masses and decay widths
with uncertainties comparable to the world averages for Sigma_c states, and
significantly smaller uncertainties than the world averages for excited
Lambda_c+ states.Comment: added one reference and one table, changed order of figures, 17
pages, 15 figure
Long-Term Memory for Pavlovian Fear Conditioning Requires Dopamine in the Nucleus Accumbens and Basolateral Amygdala
The neurotransmitter dopamine (DA) is essential for learning in a Pavlovian fear conditioning paradigm known as fear-potentiated startle (FPS). Mice lacking the ability to synthesize DA fail to learn the association between the conditioned stimulus and the fear-inducing footshock. Previously, we demonstrated that restoration of DA synthesis to neurons of the ventral tegmental area (VTA) was sufficient to restore FPS. Here, we used a target-selective viral restoration approach to determine which mesocorticolimbic brain regions receiving DA signaling from the VTA require DA for FPS. We demonstrate that restoration of DA synthesis to both the basolateral amygdala (BLA) and nucleus accumbens (NAc) is required for long-term memory of FPS. These data provide crucial insight into the dopamine-dependent circuitry involved in the formation of fear-related memory
X-ray emission from the Sombrero galaxy: discrete sources
We present a study of discrete X-ray sources in and around the
bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival
Chandra observations with a total exposure of ~200 ks. With a detection limit
of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30
kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler
et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS
observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray
binaries (LMXBs). We quantify the differential luminosity functions (LFs) for
both the detected GC and field LMXBs, whose power-low indices (~1.1 for the
GC-LF and ~1.6 for field-LF) are consistent with previous studies for
elliptical galaxies. With precise sky positions of the GCs without a detected
X-ray source, we further quantify, through a fluctuation analysis, the GC LF at
fainter luminosities down to 1E35 erg/s. The derived index rules out a
faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent
findings in several elliptical galaxies and the bulge of M31. On the other
hand, the 2-6 keV unresolved emission places a tight constraint on the field
LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101
sources in the halo of Sombrero. The presence of these sources cannot be
interpreted as galactic LMXBs whose spatial distribution empirically follows
the starlight. Their number is also higher than the expected number of cosmic
AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray
surveys. We suggest that either the cosmic X-ray background is unusually high
in the direction of Sombrero, or a distinct population of X-ray sources is
present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Neuropeptide S-Mediated Facilitation of Synaptic Transmission Enforces Subthreshold Theta Oscillations within the Lateral Amygdala
The neuropeptide S (NPS) receptor system modulates neuronal circuit activity in
the amygdala in conjunction with fear, anxiety and the expression and extinction
of previously acquired fear memories. Using in vitro brain
slice preparations of transgenic GAD67-GFP (Δneo) mice, we investigated the
effects of NPS on neural activity in the lateral amygdala as a key region for
the formation and extinction of fear memories. We are able to demonstrate that
NPS augments excitatory glutamatergic synaptic input onto both projection
neurons and interneurons of the lateral amygdala, resulting in enhanced spike
activity of both types of cells. These effects were at least in part mediated by
presynaptic mechanisms. In turn, inhibition of projection neurons by local
interneurons was augmented by NPS, and subthreshold oscillations were
strengthened, leading to their shift into the theta frequency range. These data
suggest that the multifaceted effects of NPS on amygdaloid circuitry may shape
behavior-related network activity patterns in the amygdala and reflect the
peptide's potent activity in various forms of affective behavior and
emotional memory
- …